Advertisement

Using Brouwer’s Fixed Point Theorem

  • Anders Björner
  • Jiří Matoušek
  • Günter M. Ziegler
Chapter

Abstract

Brouwer’s fixed point theorem from 1911 is a basic result in topology—with a wealth of combinatorial and geometric consequences. In these lecture notes we present some of them, related to the game of HEX and to the piercing of multiple intervals. We also sketch stronger theorems, due to Oliver and others, and explain their applications to the fascinating (and still not fully solved) evasiveness problem.

Notes

Acknowledgements

We are grateful to Marie-Sophie Litz and to the referees for very careful reading and a great number of very valuable comments and suggestions on the manuscript. Thanks to Moritz Firsching and Stephen D. Smith, and in particular to Penny Haxell, for additional references and very helpful explanations.

References

  1. 1.
    M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 5th edn. (Springer, Heidelberg, 2014)MATHGoogle Scholar
  2. 2.
    N. Alon, Piercing d-intervals. Discret. Comput. Geometry 19, 333–334 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    N. Alon, Covering a hypergraph of subgraphs. Discret. Math. 257, 249–254 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    N. Alon, D. Kleitman, Piercing convex sets and the Hadwiger Debrunner ( p, q)-problem. Adv. Math. 96, 103–112 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    N. Amenta, M. Bern, D. Eppstein, S.-H. Teng, Regression depth and center points. Discret. Comput. Geomet. 23, 305–323 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    K. Baclawski, A. Björner, Fixed points in partially ordered sets Adv. Math. 31, 263–287 (1979)MathSciNetMATHGoogle Scholar
  7. 7.
    I. Bárány, V.S. Grinberg, Block partitions of sequences. Israel J. Math. 206, 155–164 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    E. Berger, KKM – a topological approach for trees. Combinatorica 25, 1–18 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways. Vol. 2: Games in Particular (Academic Press, London, 1982)Google Scholar
  10. 10.
    M.R. Best, P. van Emde Boas, H.W. Lenstra Jr., A sharpened version of the Anderaa–Rosenberg conjecture. Technical Report ZW 30/74, Mathematisch Centrum Amsterdam, Afd. Zuivere Wisk., 1974, 20 pp.Google Scholar
  11. 11.
    A. Björner, Combinatorics and topology. Not. Am. Math. Soc. 32, 339–345 (1985)MathSciNetMATHGoogle Scholar
  12. 12.
    A. Björner, Topological methods, Chap. 34, in Handbook of Combinatorics, vol. II, ed. by R. Graham, M. Grötschel, L. Lovász (North Holland, Amsterdam), pp. 1819–1872Google Scholar
  13. 13.
    D. Blackwell, M.A. Girshick, Theory of Games and Statistical Decisions (Wiley, New York, 1954)MATHGoogle Scholar
  14. 14.
    P.V.M. Blagojević, G.M. Ziegler, Beyond the Borsuk-Ulam theorem: the topological tverberg story. In this volumeGoogle Scholar
  15. 15.
    B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978)MATHGoogle Scholar
  16. 16.
    B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity. J. Combin. Theory Ser. B 25, 105–124 (1978)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A.V. Bondarenko, M.S. Viazovska, Spherical designs via Brouwer fixed point theorem. SIAM J. Discret. Math. 24, 207–217 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    G.E. Bredon, Introduction to Compact Transformation Groups (Academic Press, New York, 1972)MATHGoogle Scholar
  19. 19.
    G. Bredon, Topology and Geometry. Graduate Texts in Mathematics, vol. 139 (Springer, New York 1993)Google Scholar
  20. 20.
    L.E.J. Brouwer, Über Abbildungen von Mannigfaltigkeiten, Math. Annalen 71, 97–115 (1911)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R.F. Brown, The Lefschetz Fixed Point Theorem (Scott, Foresman and Co., Glenview, 1971)MATHGoogle Scholar
  22. 22.
    C. Browne, HEX Strategy (A K Peters, Wellesley, 2000)MATHGoogle Scholar
  23. 23.
    R. Engelking, General Topology (PWN, Warszawa, 1977)MATHGoogle Scholar
  24. 24.
    G.J. Fisher, Computer recognition and extraction of planar graphs from their incidence matrix. IEEE Trans. Circuit Theory 2(CT-17), 154–163 (1966)Google Scholar
  25. 25.
    E.E. Floyd, On periodic maps and the euler characteristics of the associated spaces. Trans. Am. Math. Soc. 72, 138–147 (1952)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Z. Füredi, Maximum degree and fractional matching in uniform hypergraphs. Combinatorica 1, 155–162 (1981)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Gale, The game of Hex and the Brouwer fixed-point theorem. Am. Math. Mon. 86, 818–827 (1979)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    M. Gardner. The Scientific American Book of Mathematical Games and Diversions (Simon and Schuster, New York, 1958). Reprinted in “Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi” (Mathematical Association of America, Cambridge University Press, 2008)Google Scholar
  29. 29.
    M. Gardner, Mathematical Carnival, updated and revised edn. (Mathematical Association of America, Washington, DC, 1989)Google Scholar
  30. 30.
    D. Gorenstein, Finite Groups, 2nd edn. (Chelsea Publishing Company, New York, 1980). Reprint by AMS Chelsea Publishing, 2007Google Scholar
  31. 31.
    A. Gyárfás, J. Lehel, A Helly-type problem in trees, in Combinatorial Theory and Applications, ed. by P. Erdős et al. Colloquia Mathematica Societatis Janos Bolyai, vol. 4 (North-Holland, Amsterdam, 1970), pp. 57–1584Google Scholar
  32. 32.
    A. Gyárfás, J. Lehel, Covering and coloring problems for relatives of intervals. Discret. Math. 55, 167–180 (1985)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    A.W. Hales, R.I. Jewett, Regularity and positional games. Trans. Am. Math. Soc. 106, 222–229 (1963)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    S. Hell, On a topological fractional Helly theorem. Preprint, June 2005, 11 pp. arXiv:math/0506399
  35. 35.
    J. Hopcroft, R. Tarjan, Efficient planarity testing. J. ACM 21, 549–568 (1974)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    N. Illies, A counterexample to the generalized Aanderaa–Rosenberg conjecture. Inf. Process. Lett. 7, 154–155 (1978)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    T.R. Jensen, B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995)MATHGoogle Scholar
  38. 38.
    J. Kahn, M. Saks, D. Sturtevant, A topological approach to evasiveness. Combinatorica 4, 297–306 (1984)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    T. Kaiser, Transversals of d-intervals. Discret. Comput. Geomet. 18, 195–203 (1997)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    T. Kaiser, Piercing problems and topological methods. Doctoral dissertation, Department of Applied Mathematics, Charles University, Prague, 1998Google Scholar
  41. 41.
    T. Kaiser, Y. Rabinovich, Intersection properties of families of convex (n, d)-bodies. Discret. Comput. Geomet. 21, 275–287 (1999)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    D.J. Kleitman, D.J. Kwiatowski, Further results on the Aanderaa–Rosenberg conjecture. J. Combin. Theory Ser. B 28, 85–95 (1980)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta Mathematicae 14, 132–137 (1929)CrossRefMATHGoogle Scholar
  44. 44.
    S. Kryński, Remarks on matroids and Sperner’s lemma. Europ. J. Comb. 11, 485–488 (1990)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    B. Lindström, On Matroids and Sperner’s Lemma Europ. J. Comb. 2, 65–66 (1981)CrossRefGoogle Scholar
  46. 46.
    M. de Longueville, 25 years proof of the Kneser conjecture – the advent of topological combinatorics. EMS-Newsletter 53, 16–19 (2004)Google Scholar
  47. 47.
    M. de Longueville, A Course in Topological Combinatorics. Universitext (Springer, New York, 2013)CrossRefMATHGoogle Scholar
  48. 48.
    L. Lovász, Matroids and Sperner’s Lemma Europ. J. Comb. 1, 65–66 (1980)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    F.H. Lutz, Examples of \(\mathbb{Z}\)-acyclic and contractible vertex-homogeneous simplicial complexes. Discret. Comput. Geom. 27, 137–154 (2002)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    P. Mani, Zwei kombinatorische Sätze vom Typ Sperner–Tucker–Ky Fan. Monatshefte Math. Physik 71, 427–435 (1967)CrossRefMATHGoogle Scholar
  51. 51.
    J. Matoušek, Lower bounds on the transversal numbers of d-intervals. Discret. Comput. Geom. 26, 283–287 (2001)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    J. Matoušek, Using the Borsuk–Ulam Theorem, revised second printing 2008 (Springer, Berlin/Heidelberg, 2003)Google Scholar
  53. 53.
    K. Mehlhorn, Data Structures and Efficient Algorithms. Vol. 2: Graph Algorithms and NP-Completeness (Springer, Berlin, 1984)Google Scholar
  54. 54.
    K. Mehlhorn, P. Mutzel, On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. Algorithmica 16, 233–242 (1996)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    C.A. Miller, Evasiveness of graph properties and topological fixed point properties. Found. Trends Theor. Comput. Sci. 7(4), 337–415 (2011)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    E.C. Milner, D.J.A. Welsh, On the computational complexity of graph theoretical properties, in Proceedings of the Fifth British Combinatorial Conference, Aberdeen, 1975, ed. by C.S.J.A. Nash-Williams, J. Sheehan (Utilitas Mathematica, Winnipeg, 1976), pp. 471–487Google Scholar
  57. 57.
    J. Milnor, A Nobel prize for John Nash. Math. Intell. 17(3), 11–17 (1995)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Reading, 1984)MATHGoogle Scholar
  59. 59.
    J.R. Munkres, Topology. A First Course, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2000)Google Scholar
  60. 60.
    R. Oliver, Fixed-point sets of group actions on finite acyclic complexes. Commentarii Math. Helvetii 50, 155–177 (1975)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. Math. 28, 101–128 (1978)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    R. Rivest, S. Vuillemin, A generalization and proof of the Aanderaa–Rosenberg conjecture, in Proceedings of the 7th Annual Symposium on Theory of Computing, Albuquerque, 1975 (ACM, 1976), pp. 6–11Google Scholar
  63. 63.
    R. Rivest, S. Vuillemin, On recognizing graph properties from adjacency matrices. Theor. Comput. Sci. 3, 371–384 (1978)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    E.A. Ramos, Equipartition of mass distributions by hyperplanes. Discret. Comput. Geomet. 15, 147–167 (1996)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    A.L. Rosenberg, On the time required to recognize properties of graphs: a problem. SIGACT News 5, 15–16 (1973)CrossRefGoogle Scholar
  66. 66.
    J. Sgall, Solution of a covering problem related to labelled tournaments. J. Graph Theory 23, 111–118 (1996)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    J.H. Shapiro, A Fixed-Point Farrago. Undergraduate Texts in Mathematics (Springer, New York, 2016)Google Scholar
  68. 68.
    P.A. Smith, Transformations of finite period. Ann. Math. 39, 127–164 (1938)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    P.A. Smith, Fixed point theorems for periodic transformations. Am. J. Math. 63, 1–8 (1941)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    S.D. Smith, Subgroup Complexes. Mathematical Surveys and Monographs, vol. 179 (American Mathematical Society, Providence, 2011)Google Scholar
  71. 71.
    E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Hamburg VI, 265–272 (1928)Google Scholar
  72. 72.
    J. Stillwell, Classical Topology and Combinatorial Group Theory. Graduate Texts in Mathematics, vol. 72, 2nd edn. (Springer, New York, 1993)Google Scholar
  73. 73.
    F.E. Su, Borsuk–Ulam implies Brouwer: a direct construction. Am. Math. Mon. 104, 855–859 (1997)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    G. Tardos, Transversals of 2-intervals, a topological approach. Combinatorica 15, 123–134 (1995)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    C. Thomassen, The Jordan–Schönflies theorem and the classification of surfaces. Am. Math. Mon. 99, 116–130 (1992)CrossRefMATHGoogle Scholar
  76. 76.
    A.C.-C. Yao, Monotone bipartite graph properties are evasive. SIAM J. Comput. 17, 517–520 (1988)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    G.M. Ziegler, Shelling polyhedral 3-balls and 4-polytopes. Discret. Comput. Geomet. 19, 159–174 (1998)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    G.M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs. Inventiones Math. 147, 671–691 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  • Anders Björner
    • 1
  • Jiří Matoušek
    • 2
    • 3
  • Günter M. Ziegler
    • 4
  1. 1.Department of MathematicsRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of Applied MathematicsCharles University, Malostranské nám. 25PragueCzech Republic
  3. 3.Institute of Theoretical Computer ScienceETH ZurichZurichSwitzerland
  4. 4.Institute of MathematicsFreie Universität BerlinBerlinGermany

Personalised recommendations