Skip to main content

From Local Operations to Collective Dephasing: Behavior of Correlated Quantum States

  • Chapter
  • First Online:
Dynamics and Characterization of Composite Quantum Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 547 Accesses

Abstract

To analyze the correlation properties of quantum states with nonzero discord, we investigate the possibilities to create quantum discord with local operations. We introduce the correlation rank as a complementary notion for correlations in quantum states. Furthermore we study an experimentally relevant, classically correlated dephasing processes and its effect on different notions of correlations in quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the original publication, it was introduced as a “measure for the quantumness of correlations” (Ollivier and Zurek 2001).

  2. 2.

    One typically tries to characterize the entanglement of mixed states in terms of the pure states of which it is decomposed. Since there exist many equivalent decompositions of a pure state into mixed states, one minimizes the entanglement over all possible convex decompositions (Uhlmann 1998). This commonly referred to as a convex-roof.

  3. 3.

    Additional results on the generation and protection of correlated states by collective dephasing have been published in Carnio et al. (2016) after completion of this text.

References

  • Bacon, D., Lidar, D.A., Whaley, K.B.: Robustness of decoherence-free subspaces for quantum computation. Phys. Rev. A 60, 1944–1955 (1999)

    Article  ADS  Google Scholar 

  • Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535–545 (1991)

    Article  ADS  Google Scholar 

  • Benatti, F., Floreanini, R., Olivares, S.: Non-divisibility and non-Markovianity in a Gaussian dissipative dynamics. Phys. Lett. A 376, 2951–2954 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996a)

    Article  ADS  Google Scholar 

  • Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996b)

    Article  ADS  MathSciNet  Google Scholar 

  • Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  • Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Carnio, E.G. Multipartite Correlated Dephasing. Master’s thesis, Albert-Ludwigs-Universität Freiburg (2014)

    Google Scholar 

  • Carnio, E.G., Buchleitner, A., Gessner, M.: Robust asymptotic entanglement under multipartite collective dephasing. Phys. Rev. Lett. 115, 010404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Carnio, E.G., Buchleitner, A., Gessner, M.: Generating and protecting correlated quantum states under collective dephasing. New J. Phys. 18, 073010 (2016)

    Google Scholar 

  • Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    Article  ADS  Google Scholar 

  • Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102 (2012)

    Article  ADS  Google Scholar 

  • Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  • Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  • Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  • Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Eggeling, T., Werner, R.F.: Separability properties of tripartite states with \(U\otimes {}U\otimes {}U\) symmetry. Phys. Rev. A 63, 042111 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415–423 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fano, U.: Pairs of two-level systems. Rev. Mod. Phys. 55, 855–874 (1983)

    Article  ADS  Google Scholar 

  • Fischer, S., Breuer, H.P.: Coherence in a network of two-level systems coupled to a bosonic field. Phys. Rev. A 88, 062103 (2013)

    Article  ADS  Google Scholar 

  • Gao, T., Hong, Y., Lu, Y., Yan, F.: Efficient k-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007 (2013)

    Article  ADS  Google Scholar 

  • Gao, T., Yan, F., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112, 180501 (2014)

    Article  ADS  Google Scholar 

  • Gessner, M., Laine, E.M., Breuer, H.P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)

    Article  ADS  Google Scholar 

  • Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A 88, 022315 (2013)

    Article  ADS  Google Scholar 

  • Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  • Gühne, O., Seevinck, M.: Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010)

    Article  Google Scholar 

  • Haroche, S., Raimond, J.M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford Graduate Texts, Oxford (2006)

    Book  MATH  Google Scholar 

  • Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838–1843 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu, X., Gu, Y., Gong, Q., Guo, G.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)

    Article  ADS  Google Scholar 

  • Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  • Lambropoulos, P., Nikolopoulos, G.M., Nielsen, T.R., Bay, S.: Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455 (2000)

    Article  ADS  Google Scholar 

  • Lanyon, B.P., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.F.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    Article  ADS  Google Scholar 

  • Levi, F., Mintert, F.: Hierarchies of multipartite entanglement. Phys. Rev. Lett. 110, 150402 (2013)

    Article  ADS  Google Scholar 

  • Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  • Linden, N., Popescu, S., Popescu, S.: On multi-particle entanglement. Fortschritte der Physik 46, 567–578 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Meyer Jr., C.: Generalized inverses and ranks of block matrices. SIAM J. Appl. Math. 25, 597–602 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Mintert, F., Carvalho, A.R., Kuś, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207–259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  • Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  • Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W.: Fourier Analysis on Groups. Wiley, Hoboken (1990)

    Book  MATH  Google Scholar 

  • Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 63, 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  • Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011a)

    Article  ADS  Google Scholar 

  • Uhlmann, A.: Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Syst. Inf. Dyn. 5, 209–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  • Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  • Wang, L., Huang, J.H., Dowling, J., Zhu, S.Y.: Quantum information transmission. Quantum Inf. Process. 12, 899–906 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Werner, R.F.: Quantum States with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  • Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950)

    MATH  Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  • Zhao, M.J.: Private communication (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gessner .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gessner, M. (2017). From Local Operations to Collective Dephasing: Behavior of Correlated Quantum States. In: Dynamics and Characterization of Composite Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44459-8_3

Download citation

Publish with us

Policies and ethics