Random Walks in Swarm Robotics: An Experiment with Kilobots

  • Cristina Dimidov
  • Giuseppe Oriolo
  • Vito TrianniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9882)


Random walks represent fundamental search strategies for both animal and robots, especially when there are no environmental cues that can drive motion, or when the cognitive abilities of the searching agent do not support complex localisation and mapping behaviours. In swarm robotics, random walks are basic building blocks for the individual behaviour and support the emergent collective pattern. However, there has been limited account for the correct parameterisation to be used in different search scenarios, and the relationship between search efficiency and information transfer within the swarm has been often overlooked. In this study, we analyse the efficiency of random walk patterns for a swarm of Kilobots searching a static target in two different environmental conditions entailing a bounded or an open space. We study the search efficiency and the ability to spread information within the swarm through numerical simulations and real robot experiments, and we determine what kind of random walk best fits each experimental scenario.


Random Walk Central Place Convergence Time Search Efficiency Swarm Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Vito Trianni acknowledges support from the project DICE (FP7 Marie Curie Career Integration Grant, ID: 631297).


  1. 1.
    Baronchelli, A., Radicchi, F.: Lévy flights in human behaviour and cognition. Chaos Solitons Fractals 56(C), 101–105 (2013)CrossRefGoogle Scholar
  2. 2.
    Bartumeus, F., da Luz, M., Viswanathan, G., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)CrossRefGoogle Scholar
  3. 3.
    Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 378–385. IEEE (2011)Google Scholar
  4. 4.
    Blackwell, P.: Random diffusion models for animal movement. Ecol. Model. 100(1–3), 87–102 (1997)CrossRefGoogle Scholar
  5. 5.
    Campo, A., Garnier, S., Dédriche, O., Zekkri, M., Dorigo, M.: Self-organized discrimination of resources. PLoS ONE 6(5), e19888 (2011)CrossRefGoogle Scholar
  6. 6.
    Codling, E., Plank, M., Benhamou, S.: Random walk models in biology. J. Roy. Soc. Interface 5(25), 813–834 (2008)CrossRefGoogle Scholar
  7. 7.
    Edwards, A., Phillips, R., Watkins, N., Freeman, M., Murphy, E., et al.: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449(7165), 1044–1048 (2007)CrossRefGoogle Scholar
  8. 8.
    Fujisawa, R., Dobata, S.: Lévy walk enhances efficiency of group foraging in pheromone-communicating swarm robots. In: 2013 IEEE/SICE International Symposium on System Integration (SII), pp. 808–813. IEEE (2013)Google Scholar
  9. 9.
    Hecker, J., Moses, M.: Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intell. 9(1), 1–28 (2015)CrossRefGoogle Scholar
  10. 10.
    Hills, T., Todd, P., Lazer, D., Redish, A., Couzin, I.: The cognitive search research group: exploration versus exploitation in space, mind, and society. Trends Cogn. Sci. 19(1), 46–54 (2015)CrossRefGoogle Scholar
  11. 11.
    Humphries, N., Queiroz, N., Dyer, J., Pade, N., Musyl, M., et al.: Environmental context explains Lévy and brownian movement patterns of marine predators. Nature 465(7301), 1066–1069 (2010)CrossRefGoogle Scholar
  12. 12.
    Kato, S., Jones, M.: An extended family of circular distributions related to wrapped Cauchy distributions via Brownian motion. Bernoulli 19(1), 154–171 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Palyulin, V., Chechkin, A., Metzler, R.: Lévy flights do not always optimize random blind search for sparse targets. Proc. Natl. Acad. Sci. U S A 111(8), 2931–2936 (2014)CrossRefGoogle Scholar
  14. 14.
    Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro–macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2–3), 75–102 (2015)CrossRefGoogle Scholar
  15. 15.
    Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)CrossRefGoogle Scholar
  16. 16.
    Sutantyo, D., Kernbach, S., Levi, P., Nepomnyashchikh, V.: Multi-robot searching algorithm using Lévy flight and artificial potential field. In: IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6. IEEE (2010)Google Scholar
  17. 17.
    Trianni, V., Campo, A.: Fundamental collective behaviors in swarm robotics. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1377–1394. Springer, Berlin, Germany (2015)CrossRefGoogle Scholar
  18. 18.
    Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-robot network: from abstract models to empirical validation. IEEE Robot. Autom. Lett. 1(1), 348–353 (2016)CrossRefGoogle Scholar
  19. 19.
    Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents Multi-Agent Syst. 30, 1–28 (2015)Google Scholar
  20. 20.
    Viswanathan, G., Afanasyev, V., Buldyrev, S., Havlin, S., da Luz, M., et al.: Lévy flights in random searches. Phys. A: Stat. Mech. Appl. 282(1–2), 1–12 (2000)CrossRefGoogle Scholar
  21. 21.
    Viswanathan, G., Raposo, E., da Luz, M.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5(3), 133–150 (2008)CrossRefGoogle Scholar
  22. 22.
    Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483–530 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cristina Dimidov
    • 1
  • Giuseppe Oriolo
    • 1
  • Vito Trianni
    • 2
    Email author
  1. 1.DIAGSapienza University of RomeRomeItaly
  2. 2.ISTCNational Research CouncilRomeItaly

Personalised recommendations