Skip to main content

Role of Bacillus Genus in the Production of Value-Added Compounds

  • Chapter
  • First Online:
Book cover Bacilli and Agrobiotechnology

Abstract

Development of value-added products from renewable supplies is attracting more and more attention due to the fossil fuel resource depletion and environmental concerns. Bacillus species show distinctive benefits as hosts for production of industrially important enzymes and biochemical compounds. They are also improved through metabolic engineering techniques for efficient production of fuels, microbial enzymes, and fine and bulk chemicals. In this chapter, recent findings about Bacillus spp. and their usage as microbial factories are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2008). Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 150(3), 305–325.

    Article  CAS  PubMed  Google Scholar 

  • Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232.

    Article  CAS  PubMed  Google Scholar 

  • Aehle, W. (2006). Enzymes in industry: Products and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  • Agnew, M. D., Koval, S. F., & Jarrell, K. F. (1995). Isolation and characterisation of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Systematic and Applied Microbiology, 18(2), 221–230.

    Article  CAS  Google Scholar 

  • Ajikumar, P. K., Xiao, W.-H., Tyo, K. E. J., Wang, Y., Simeon, F., Leonard, E., et al. (2010). Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 330(6000), 70–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amani, H., Mehrnia, M. R., Sarrafzadeh, M. H., Haghighi, M., & Soudi, M. R. (2010). Scale up and application of biosurfactant from Bacillus subtilis in enhanced oil recovery. Applied Biochemistry and Biotechnology, 162(2), 510–523.

    Article  CAS  PubMed  Google Scholar 

  • Anakwenze, V., Ezemba, C., & Ekwealor, I. (2014). Optimization of fermentation conditions of Bacillus thuringiensis EC1 for enhanced methionine production. Advances in Microbiology, 4, 344–352.

    Article  CAS  Google Scholar 

  • Ang, C. Y. W., Liu, K., & Huang, Y.-W. (1999). Asian foods: Science and technology. Boca Raton: CRC Press.

    Google Scholar 

  • Anon, E., Serra-Picamal, X., Hersen, P., Gauthier, N. C., Sheetz, M. P., Trepat, X., et al. (2012). Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proceedings of the National Academy of Sciences, 109(27), 10891–10896.

    Google Scholar 

  • Araya, M., Morelli, L., Reid, G., Sanders, M. E., Stanton, C., Pineiro, M., et al. (2002). Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group report on drafting guidelines for the evaluation of probiotics in food, London (ON, Canada) April 30 and May 1. ftp.fao.org/es/esn/food/wgreport2. pdf 2002.

  • Asahara, T., Mori, Y., Zakataeva, N. P., Livshits, V. A., Yoshida, K.-i., & Matsuno, K. (2010). Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Applied Microbiology and Biotechnology, 87(6), 2195–2207.

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi, M. (2013). Microbial production and chemical transformation of poly γ glutamate. Microbial Biotechnology, 6(6), 664–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astadi, I. R., Astuti, M., Santoso, U., & Nugraheni, P. S. (2009). In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chemistry, 112(3), 659–663.

    Article  CAS  Google Scholar 

  • Awais, M., Pervez, A., Yaqub, A., & Shah, M. M. (2010). Production of antimicrobial metabolites by Bacillus subtilis immobilized in polyacrylamide gel. Pakistan Journal of Zoology, 42(3), 267–275.

    CAS  Google Scholar 

  • Azevedo, L., Gomes, J. C., Stringheta, P. C., Gontijo, A., Padovani, C. R., Ribeiro, L. R., et al. (2003). Black bean (Phaseolus vulgaris L.) as a protective agent against DNA damage in mice. Food and Chemical Toxicology, 41(12), 1671–1676.

    Article  CAS  PubMed  Google Scholar 

  • Babasaki, K., Takao, T., Shimonishi, Y., Kurahashi, K., & Subtilosin, A. (1985). a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. Journal of Biochemistry, 98(3), 585–603.

    CAS  PubMed  Google Scholar 

  • Bai, Y., Zhou, X., & Smith, D. L. (2003). Enhanced soybean plant growth resulting from co-inoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5), 1774–1781.

    Article  Google Scholar 

  • Bajaj, I., & Singhal, R. (2011). Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresource Technology, 102(10), 5551–5561.

    Article  CAS  PubMed  Google Scholar 

  • Bano, S., Qader, S. A. U., Aman, A., Syed, M. N., & Azhar, A. (2011). Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS PharmSciTech, 12(1), 255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J., & Henriques, A. O. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71(2), 968–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barboza-Corona, J. E., de la Fuente-Salcido, N., Alva-Murillo, N., Ochoa-Zarzosa, A., & López-Meza, J. E. (2009). Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Veterinary Microbiology, 138(1), 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Barros, F. F. C., Ponezi, A. N., & Pastore, G. M. (2008). Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. Journal of Industrial Microbiology & Biotechnology, 35(9), 1071–1078.

    Article  CAS  Google Scholar 

  • Batra, L. R. (1973). Nematosporaceae (Hemiascomycetidae): Taxonomy, pathogenicity, distribution, and vector relations. US Dept. of Agriculture.

    Google Scholar 

  • Beaumont, M. (2002). Flavouring composition prepared by fermentation with Bacillus spp. International Journal of Food Microbiology, 75(3), 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Beliavskaia, V., Kashperova, T., Bondarenko, V., Il’ichev, A., Sorokulova, I., & Malik, N. (2000). Experimental evaluation of the biological safety of gene-engineered bacteria using a model strain Bacillus subtilis interferon-producing strain. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 2001(2), 16–20.

    Google Scholar 

  • Beliavskaia, V. A., Cherdyntseva, N. V., Bondarenko, V. M., & Litviakov, N. V. (2002a). Biological effects of interferon, produced by recombinant bacteria of the probiotic preparation subalin. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 2002(2), 102–109.

    Google Scholar 

  • Beliavskaia, V. A., Kashperova, T. A., Bondarenko, V. M., Il’ichev, A. A., Sorokulova, I. B., & Malik, N. I. (2002b). Experimental evaluation of the biological safety of gene-engineered bacteria using a model strain Bacillus subtilis interferon-producing strain. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 2000(2), 16–20.

    Google Scholar 

  • Benedetti, A., Daly, S., Xaiz, R., Pagani, H., Benedetti, A., Daly, S., Xaiz, R., Pagani, H., Benedetti, A., Daly, S., Xaiz, R., & Pagani, H. s. (2010). Google patents, assignee. Culture of Bacillus subtilis mutant strain with a carbon source and an antifoam agent.

    Google Scholar 

  • Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., et al. (2011). Efficient media for high menaquinone-7 production: Response surface methodology approach. New Biotechnology, 28(6), 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Berenjian, A., Mahanama, R., Kavanagh, J., & Dehghani, F. (2013). Vitamin K series: Current status and future prospects. Critical Reviews in Biotechnology, 0, 1–10.

    Google Scholar 

  • Berenjian, A., Mahanama, R., Kavanagh, J., Dehghani, F., & Ghasemi, Y. (2014). Nattokinase production: Medium components and feeding strategy studies. Chemical Industry and Chemical Engineering Quarterly, 2014(00), 37–37.

    Google Scholar 

  • Bigelis, R. (1989). Industrial products of biotechnology: Application of gene technology. In Biotechnology (Sect. 243), Weinheim: VCH.

    Google Scholar 

  • Bilev, A. E. (2002). Comparative evaluation of probiotic activity in respect to in vitro pneumotropic bacteria and pharmacodynamics of biosporin-strain producers in patients with chronic obstructive pulmonary diseases. Voenno-Medit͡sinskiĭ Zhurnal, 323(9), 54–57.

    CAS  PubMed  Google Scholar 

  • Bower, S. G., Perkins, J. B., Yocum, R. R., Pero, J. G., Bower, S. G., Perkins, J. B., Yocum, R. R., Pero, J. G., Bower, S. G., Perkins, J. B., Yocum, R. R. (2001). Pero JGs; Google Patents, assignee. Biotin biosynthesis in Bacillus subtilis.

    Google Scholar 

  • Božić, N., Ruiz, J., López-Santín, J., & Vujčić, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 53(2), 203–209.

    Article  CAS  Google Scholar 

  • Brautaset, T., Jakobsen, Ø. M., Josefsen, K. D., Flickinger, M. C., & Ellingsen, T. E. (2007). Bacillus methanolicus: A candidate for industrial production of amino acids from methanol at 50 C. Applied Microbiology and Biotechnology, 74(1), 22–34.

    Article  CAS  PubMed  Google Scholar 

  • Bruinenberg, P., Hulst, A., Faber, A., Voogd, R., Bruinenberg, P., Hulst, A., Faber. A., Voogd, R., Bruinenberg, P., Hulst, A., Faber, A., Voogd, R. S. (1996). A process for surface sizing or coating of paper.

    Google Scholar 

  • Buescher, J. M., & Margaritis, A. (2007). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Burkovski, A., & Krämer, R. (2002). Bacterial amino acid transport proteins: Occurrence, functions, and significance for biotechnological applications. Applied Microbiology and Biotechnology, 58(3), 265–274.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M., Song, C., Jin, Y., Liu, L., Liu, J., Xie, H., et al. (2010). Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes. Journal of Molecular Catalysis B: Enzymatic, 67(1), 111–116.

    Article  CAS  Google Scholar 

  • Cao, M., Geng, W., Liu, L., Song, C., Xie, H., Guo, W., et al. (2011). Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 102(5), 4251–4257.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, C., Paul, M., Xie, L., & van der Donk, W. A. (2005). Biosynthesis and mode of action of lantibiotics. Chemical Reviews, 105(2), 633–684.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y.-H., Song, J. Y., Kim, K. M., Kim, M. K., Lee, I. Y., Kim, S. B., et al. (2010). Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. New Biotechnology, 27(4), 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, R., Jana, A., & Jha, M. (2004). Enzyme technology applications in leather processing. Indian Journal of Science and Technology, 11, 659–671.

    CAS  Google Scholar 

  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Coutte, F., Lecouturier, D., Yahia, S. A., Leclère, V., Béchet, M., Jacques, P., et al. (2010). Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology, 87(2), 499–507.

    Article  CAS  PubMed  Google Scholar 

  • Cutting, S. M. (2011). Bacillus probiotics. Food Microbiology, 28(2), 214–220.

    Article  PubMed  Google Scholar 

  • Dabbagh, F., Negahdaripour, M., Berenjian, A., Behfar, A., Mohammadi, F., Zamani, M., et al. (2014). Nattokinase: Production and application. Applied Microbiology and Biotechnology, 98(22), 9199–9206.

    Google Scholar 

  • Das, K., & Mukherjee, A. K. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants. Process Biochemistry, 42(8), 1191–1199.

    Article  CAS  Google Scholar 

  • de Faria, A. F., Teodoro-Martinez, D. S., de Oliveira Barbosa, G. N., Gontijo Vaz, B., Serrano Silva, Í., Garcia, J. S., et al. (2011). Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 46(10), 1951–1957.

    Article  CAS  Google Scholar 

  • de Jong, B., Siewers, V., & Nielsen, J. (2011). Systems biology of yeast: Enabling technology for development of cell factories for production of advanced biofuels. Current Opinion in Biotechnology, 23(4), 624–630.

    Article  PubMed  CAS  Google Scholar 

  • Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–8174.

    Article  CAS  PubMed  Google Scholar 

  • Demain, A. L. (2007). REVIEWS: The business of biotechnology. Industrial Biotechnology, 3(3), 269–283.

    Article  Google Scholar 

  • Dewan, S. (2011). Enzymes in industrial applications: Global markets (Report BIO030F). BCC Research, Wellesley.

    Google Scholar 

  • Duc, L. H., Fraser, P. D., Tam, N. K. M., & Cutting, S. M. (2006). Carotenoids present in halotolerant Bacillus spore formers. FEMS Microbiology Letters, 255(2), 215–224.

    Article  CAS  Google Scholar 

  • Dworkin, M. (1999). The Prokaryotes an evolving electronic resource for the microbiological community. New York: Springer-Verlag.

    Google Scholar 

  • Eggeling, L., & Bott, M. (2010). Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press.

    Google Scholar 

  • Endo, T., Nakano, M., Shimizu, S., Fukushima, M., & Miyoshi, S. (1999). Effects of a probiotic on the lipid metabolism of cocks fed on a cholesterol-enriched diet. Bioscience, Biotechnology, and Biochemistry, 63(9), 1569–1575.

    Article  CAS  PubMed  Google Scholar 

  • Esteves, E. A., Martino, H. S. D., Oliveira, F. C. E., Bressan, J., & Costa, N. M. B. (2010). Chemical composition of a soybean cultivar lacking lipoxygenases (LOX2 and LOX3). Food Chemistry, 122(1), 238–242.

    Article  CAS  Google Scholar 

  • Fischbach, M. A., & Walsh, C. T. (2006). Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chemical Reviews, 106(8), 3468–3496.

    Article  CAS  PubMed  Google Scholar 

  • Fritze, D., & Pukall, R. (2001). Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. International Journal of Systematic and Evolutionary Microbiology, 51(1), 35–37.

    Article  CAS  PubMed  Google Scholar 

  • Gálvez, A., López, R. L., Abriouel, H., Valdivia, E., & Omar, N. B. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Critical Reviews in Biotechnology, 28(2), 125–152.

    Article  PubMed  CAS  Google Scholar 

  • Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., Sukumaran, R. K., & Pandey, A. (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99(11), 4597–4602.

    Article  CAS  PubMed  Google Scholar 

  • Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture, 180(1), 147–165.

    Article  Google Scholar 

  • Gebhardt, K., Schimana, J., Müller, J., Fiedler, H.-P., Kallenborn, H. G., Holzenkämpfer, M., et al. (2002). Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. FEMS Microbiology Letters, 217(2), 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Gong, G., Zheng, Z., Chen, H., Yuan, C., Wang, P., Yao, L., et al. (2009). Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technology and Biotechnology, 47(1), 27.

    CAS  Google Scholar 

  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.

    Article  CAS  Google Scholar 

  • Hancock, R. E. W., & Chapple, D. S. (1999). Peptide antibiotics. Antimicrobial Agents and Chemotherapy, 43(6), 1317–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Héchard, Y., & Sahl, H.-G. (2002). Mode of action of modified and unmodified bacteriocins from gram-positive bacteria. Biochimie, 84(5), 545–557.

    Article  PubMed  Google Scholar 

  • Hmidet, N., Ali, N. E. H., Zouari-Fakhfakh, N., Haddar, A., Nasri, M., & Sellemi-Kamoun, A. (2010). Chicken feathers: A complex substrate for the co-production of α-amylase and proteases by B. licheniformis NH1. Journal of Industrial Microbiology & Biotechnology, 37(9), 983–990.

    Article  CAS  Google Scholar 

  • Homma, H., & Shinohara, T. (2004). Effects of probiotic Bacillus cereus toyoi on abdominal fat accumulation in the Japanese quail (Coturnix japonica). Animal Science Journal, 75(1), 37–41.

    Article  CAS  Google Scholar 

  • Hong, H. A., Duc, L. H., & Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiol Rev, 29(4), 813–835.

    Article  CAS  PubMed  Google Scholar 

  • Hong, H. A., Khaneja, R., Tam, N. M. K., Cazzato, A., Tan, S., Urdaci, M., et al. (2009a). Bacillus subtilis isolated from the human gastrointestinal tract. Research in Microbiology, 160(2), 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Hong, H. A., To, E., Fakhry, S., Baccigalupi, L., Ricca, E., & Cutting, S. M. (2009b). Defining the natural habitat of Bacillus spore-formers. Research in Microbiology, 160, 375–379.

    Article  PubMed  Google Scholar 

  • Hosoi, T., Ametani, A., Kiuchi, K., & Kaminogawa, S. (1999). Changes in fecal microflora induced by intubation of mice with Bacillus subtilis (natto) spores are dependent upon dietary components. Canadian Journal of Microbiology, 45(1), 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Hosoi, T., Ametani, A., Kiuchi, K., & Kaminogawa, S. (2000). Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Canadian Journal of Microbiology, 46(10), 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, C.-Y., Tsai, S.-P., Wang, D.-M., Chang, Y.-N., & Hsieh, H.-J. (2005). Preparation of -PGA/chitosan composite tissue engineering matrices. Biomaterials, 26(28), 5617–5623.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., et al. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture, 90(7), 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Du, Y., Xu, G., Zhang, H., Zhu, F., Huang, L., et al. (2011). High yield and cost‐effective production of poly (γ‐glutamic acid) with Bacillus subtilis. Engineering in Life Sciences, 11(3), 291–297.

    Article  CAS  Google Scholar 

  • Ikenebomeh, M. J., Kok, R., & Ingram, J. M. (1986). Processing and fermentation of the African locust bean (Parkia filicoidea Welw.) to produce dawadawa. Journal of the Science of Food and Agriculture, 37(3), 273–282.

    Article  CAS  Google Scholar 

  • Intelligence Am. (2010). Market report: World surfactant market (Market report Ratingen). Germany: Acmite Market Intelligence. Retrieved from http://www.acmite.com/brochure/Brochure-Surfactant-MarketReport.pdf

  • Ivanovics, G., & Bruckner, V. (1937). Über die chemische Natur der immunspezifischen Kapselsubstanz der Milzbrandbazillen. Naturwissenschaften, 25(16), 250–250.

    Article  CAS  Google Scholar 

  • Jadamus, A., Vahjen, W., & Simon, O. (2001). Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Archiv für Tierernährung, 54(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, G. T., Kim, J. N., Ryu, H. W., & Wee, Y. J. (2013). Improved production of poly (γ-glutamic acid) by Bacillus subtilis RKY3 and its recovery from viscous fermentation broth as a biodegradable polymer. Journal of Chemical Technology & Biotechnology, 89, 728–734

    Google Scholar 

  • Jung, J., Yu, K. O., Ramzi, A. B., Choe, S. H., Kim, S. W., & Han, S. O. (2012). Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnology and Bioengineering, 109(9), 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  • Kalingan, A. E., & Krishnan, M. R. V. (1997). Application of agro-industrial by-products for riboflavin production by Eremothecium ashbyii NRRL 1363. Applied Microbiology and Biotechnology, 47(3), 226–230.

    Article  CAS  Google Scholar 

  • Kambourova, M., Tangney, M., & Priest, F. G. (2001). Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology, 67(2), 1004–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriological Reviews, 41(2), 449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keasling, J. D. (2010). Manufacturing molecules through metabolic engineering. Science, 330(6009), 1355–1358.

    Article  CAS  PubMed  Google Scholar 

  • Khaneja, R., Perezâ-Fons, L., Fakhry, S., Baccigalupi, L., Steiger, S., To, E., et al. (2009). Carotenoids found in Bacillus. Journal of Applied Microbiology, 108(6), 1889–1902.

    PubMed  Google Scholar 

  • Kiers, J. L., Rombouts, F. M., & Nout, M. J. R. (2000). In vitro digestibility of Bacillus fermented soya bean. International Journal of Food Microbiology, 60(2), 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.-H., & Choi, N.-S. (2000). Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Bioscience, Biotechnology, and Biochemistry, 64(8), 1722–1725.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., et al. (1996). Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Applied and Environmental Microbiology, 62(7), 2482–2488.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, I.-K., Roldão, A., Siewers, V., & Nielsen, J. A. (2012). Systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Research, 12(2), 228–248.

    Article  CAS  PubMed  Google Scholar 

  • Korenblum, E., Der Weid, I., Santos, A. L. S., Rosado, A. S., Sebastian, G. V., Coutinho, C., et al. (2005). Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus HO-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. Journal of Applied Microbiology, 98(3), 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Korenblum, E., Sebastián, G. V., Paiva, M. M., Coutinho, C., Magalhães, F. C. M., Peyton, B. M., et al. (2008). Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Applied Microbiology and Biotechnology, 79(1), 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Kreyenschulte, D., Krull, R., & Margaritis, A. (2012). Recent advances in microbial biopolymer production and purification. Critical Reviews in Biotechnology, 00, 1–16.

    Google Scholar 

  • Kumar, P., & Satyanarayana, T. (2009). Microbial glucoamylases: Characteristics and applications. Critical Reviews in Biotechnology, 29(3), 225–255.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., Thakur, N., Verman, R., & Bhalla, T. C. (2008). Microbial proteases and application as laundry detergent additive. Research Journal of Microbiology, 3(12), 661–672.

    Article  CAS  Google Scholar 

  • Kuninaka, A. (1996). Nucleotides and related compounds. Wiley Online Library.

    Google Scholar 

  • Kwon, E.-Y., Kim, K. M., Kim, M. K., Lee, I. Y., & Kim, B. S. (2011). Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis. Bioprocess and Biosystems Engineering, 34(7), 789–793.

    Article  CAS  PubMed  Google Scholar 

  • La Rosa, M., Bottaro, G., Gulino, N., Gambuzza, F., Di Forti, F., Ini, G., et al. (2003). Prevention of antibiotic-associated diarrhea with Lactobacillus sporogens and fructo-oligosaccharides in children. A multicentric double-blind vs placebo study. Minerva Pediatrica, 55(5), 447–452.

    PubMed  Google Scholar 

  • Lawton, E. M., Ross, R. P., Hill, C., & Cotter, P. D. (2007). Two-peptide lantibiotics: A medical perspective. Mini Reviews in Medicinal Chemistry, 7(12), 1236–1247.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. H., & Chou, C. C. (2006). Distribution profiles of isoflavone isomers in black bean kois prepared with various filamentous fungi. Journal of Agricultural and Food Chemistry, 54, 1309–1314.

    Article  CAS  PubMed  Google Scholar 

  • Leejeerajumnean, A., Duckham, S. C., & Owens, J. D. (2001). Volatile compounds in Bacillus-fermented soybeans. Journal of the Science of Food and Agriculture, 81(5), 525–529.

    Article  CAS  Google Scholar 

  • Leuchtenberger, W., Huthmacher, K., & Drauz, K. (2005). Biotechnological production of amino acids and derivatives: Current status and prospects. Applied Microbiology and Biotechnology, 69(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Kawamura, Y., Shida, O., Yamagata, S., Deguchi, T., & Ezaki, T. (2002). Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. International Journal of Systematic and Evolutionary Microbiology, 52(4), 1205–1209.

    CAS  PubMed  Google Scholar 

  • Li, H., Zhang, G., Deng, A., Chen, N., & Wen, T. (2011). De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis. Biotechnology Letters, 33(8), 1575–1580.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J.-F., Yang, J., Yang, S.-Z., Ye, R.-Q., & Mu, B.-Z. (2012). Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166(8), 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  • Mahanama, R., Berenjian, A., Valtchev, P., Talbot, A., Biffin, R., Regtop, H., et al. (2011). Enhanced production of menaquinone 7 via solid substrate fermentation from Bacillus subtilis. International Journal of Food Engineering, 7(5), 1–23.

    Google Scholar 

  • Mahanama, R., Berenjian, A., Regtop, H., Talbot, A., Dehghani, F., & Kavanagh, J. M. (2012). Modeling Menaquinone 7 production in tray type solid state fermenter. ANZIAM Journal, 53, 354–372.

    Article  Google Scholar 

  • Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C., & Breaker, R. R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 113(5), 577–586.

    Article  CAS  PubMed  Google Scholar 

  • Mannanov, R. N., & Sattarova, R. K. (2001). Antibiotics produced by Bacillus bacteria. Chemistry of Natural Compounds, 37(2), 117–123.

    Article  CAS  Google Scholar 

  • Manocha, B., & Margaritis, A. (2010). Controlled release of doxorubicin from doxorubicin/γ-polyglutamic acid ionic complex. Journal of Nanomaterials, 2010, 12.

    Article  CAS  Google Scholar 

  • Martens, J. H., Barg, H., Warren, M., & Jahn, D. (2002). Microbial production of vitamin B12. Applied Microbiology and Biotechnology, 58(3), 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Martirani, L., Varcamonti, M., Naclerio, G., & De Felice, M. (2002). Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microbial Cell Factories, 1(1), 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui, H., Kawasaki, H., Shimaoka, M., & Kurahashi, O. (2001). Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Bioscience, Biotechnology, and Biochemistry, 65(3), 570–578.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, K., Okada, N., & Nakagawa, S. (2013). Application of poly (γ-Glutamic Acid) based nanoparticles as antigen delivery carriers in cancer immunotherapy. In Bio-nanotechnology: A revolution in food, biomedical and health sciences (pp. 487–505). Wiley Online Library.

    Google Scholar 

  • Maurer, K.-H. (2004). Detergent proteases. Current Opinion in Biotechnology, 15(4), 330–334.

    Article  CAS  PubMed  Google Scholar 

  • Mazza, P. (1994). The use of Bacillus subtilis as an antidiarrhoeal microorganism. Bollettino Chimico Farmaceutico, 133(1), 3–18.

    CAS  PubMed  Google Scholar 

  • McAuliffe, J. (2012). Industrial enzymes and biocatalysis. In J. A. Kent (Ed.), Handbook of industrial chemistry and biotechnology (pp. 1183–1227). Boston: Springer.

    Chapter  Google Scholar 

  • Melnick, J., Lis, E., Park, J.-H., Kinsland, C., Mori, H., Baba, T., et al. (2004). Identification of the two missing bacterial genes involved in thiamine salvage: Thiamine pyrophosphokinase and thiamine kinase. Journal of Bacteriology, 186(11), 3660–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming, L.-J., & Epperson, J. D. (2002). Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. Inorganic Biochemistry, 91(1), 46–58.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, C., Iyer, S., Skomurski, J. F., & Vary, J. C. (1986). Red pigment in Bacillus megaterium spores. Applied and Environmental Microbiology, 52(1), 64–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagawa, K.-i., Kimura, H., Nakahama, K., Kikuchi, M., Doi, M., Akiyama, S.-i., et al. (1986). Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Nature Biotechnology, 4(3), 225–228.

    Article  CAS  Google Scholar 

  • Miyagawa, K.-i., Kanzaki, N., Kimura, H., Sumino, Y., Akiyama, S.-i., & Nakao, Y. (1989). Increased inosine production by a Bacillus subtilis xanthine-requiring mutant derived by insertional inactivation of the IMP dehydrogenase gene. Nature Biotechnology, 7(8), 821–824.

    Article  CAS  Google Scholar 

  • Moore, S. J., Lawrence, A. D., Biedendieck, R., Deery, E., Frank, S., Howard, M. J., et al. (2013). Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proceedings of the National Academy of Sciences, 110(37), 14906–14911.

    Article  CAS  Google Scholar 

  • Moore, S. J., Mayer, M., Biedendieck, R., Deery, E., & Warren, M. J. (2014). Towards a cell factory for vitamin B12 production in Bacillus megaterium: Bypassing of the cobalamin riboswitch control elements. New Biotechnology, 31, 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama, H., Yano, H., Terasaki, Y., & Anazawa, H. (2001). Overproduction of L-lysine from methanol by Methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Applied and Environmental Microbiology, 67(7), 3064–3070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee, A. K., Adhikari, H., & Rai, S. K. (2008). Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochemical Engineering Journal, 39(2), 353–361.

    Article  CAS  Google Scholar 

  • Mukherjee, A. K., Borah, M., & Rai, S. K. (2009). To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations. Biochemical Engineering Journal, 43(2), 149–156.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Sharma, S. K., & Mudhoo, A. (2014). 12 Biosurfactants. In Biosurfactants: research trends and applications (p. 309). Boca Raton: CRC Press.

    Google Scholar 

  • Mutuş, R., Kocabaǧli, N., Alp, M., Acar, N., Eren, M., & Gezen, Ş. Ş. (2006). The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poultry Science, 85(9), 1621–1625.

    Article  PubMed  Google Scholar 

  • Otani, Y., Tabata, Y., & Ikada, Y. (1999). Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak. The Annals of Thoracic Surgery, 67(4), 922–926.

    Article  CAS  PubMed  Google Scholar 

  • Outtrup, H., Jørgensen, S. T., Berkeley, R., Heyndrickx, M., Logan, N., & De Vos, P. (2002). The importance of Bacillus species in the production of industrial enzymes. In Applications and systematics of bacillus and relatives (pp. 206–218). Malden: Wiley.

    Google Scholar 

  • Paik, S. H., Chakicherla, A., & Hansen, J. N. (1998). Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. The Journal of Biological Chemistry, 273(36), 23134–23142.

    Article  CAS  PubMed  Google Scholar 

  • Park, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, 244(1), 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik, P., Kaushik, J. K., Grover, S., & Batish, V. K. (2001). Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. Journal of Applied Microbiology, 91(4), 636–645.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Huang, Q., Zhang, R.-h., & Zhang, Y.-Z. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douch, a traditional Chinese soybean food. Comparative Biochemistry and Physiology Part B, 134(1), 45–52.

    Article  Google Scholar 

  • Peng, Y., Yang, X., & Zhang, Y. (2005). Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Applied Microbiology and Biotechnology, 69(2), 126–132.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, J. B., Pero, J. G., Sloma, A., Perkins, J. B., Pero, J. G., Sloma, A., Perkins, J. B., Pero, J. G., & Sloma, A. S. (1991). Riboflavin overproducing strains of bacteria.

    Google Scholar 

  • Petsch, D., & Anspach, F. B. (2000). Endotoxin removal from protein solutions. Journal of Biotechnology, 76(2), 97–119.

    Article  CAS  PubMed  Google Scholar 

  • Pfefferle, W., Möckel, B., Bathe, B., & Marx, A. (2003). Biotechnological manufacture of lysine. In Microbial production of L-amino acids (pp. 59–112). Berlin: Springer.

    Google Scholar 

  • Pinchuk, I. V., Bressollier, P., Verneuil, B., Fenet, B., Sorokulova, I. B., Mأ©graud, f., et al. (2001). In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy, 45(11), 3156–3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirner, H. M., & Stolz, J. (2006). Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin-protein ligase. The Journal of Biological Chemistry, 281(18), 12381–12389.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, O., & Jaiswal, N. (2010). α-Amylase: An ideal representative of thermostable enzymes. Applied Biochemistry and Biotechnology, 160(8), 2401–2414.

    Article  PubMed  Google Scholar 

  • Rajagopalan, G., & Krishnan, C. (2008). α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technology, 99(8), 3044–3050.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, K.-J., Sethupathi, P., Driks, A., Lanning, D. K., & Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. Journal of Immunology, 172(2), 1118–1124.

    Article  CAS  Google Scholar 

  • Riley, M. A., & Wertz, J. E. (2002a). Bacteriocin diversity: Ecological and evolutionary perspectives. Biochimie, 84(5), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Riley, M. A., & Wertz, J. E. (2002b). Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology, 56(1), 117–137.

    Article  CAS  PubMed  Google Scholar 

  • Saeki, K., Ozaki, K., Kobayashi, T., & Ito, S. (2007). Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. Journal of Bioscience and Bioengineering, 103(6), 501–508.

    Article  CAS  PubMed  Google Scholar 

  • Saimmai, A., Rukadee, O., Sobhon, V., & Maneerat, S. (2012). Biosurfactant production by Bacillus subtilis TD4 and Pseudomonas aeruginosa SU7 grown on crude glycerol obtained from biodiesel production plant as sole carbon source. Journal of Scientific and Industrial Research, 71, 396–406.

    CAS  Google Scholar 

  • Samanya, M., & Yamauchi, K.-E. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var natto. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(1), 95–104.

    Article  Google Scholar 

  • Sanders, M. E., Morelli, L., & Tompkins, T. A. (2003). Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comprehensive Reviews in Food Science and Food Safety, 2(3), 101–110.

    Article  Google Scholar 

  • Sandhya, C., Nampoothiri, K. M., & Pandey, A. (2005). Microbial proteases. In J. Barredo (Ed.), Microbial enzymes and biotransformations (pp. 165–179). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Sarkar, P. K., Cook, P. E., & Owens, J. D. (1993). Bacillus fermentation of soybeans. World Journal of Microbiology and Biotechnology, 9(3), 295–299.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, P. K., Tamang, J. P., Cook, P. E., & Owens, J. D. (1994). Kinema-a traditional soybean fermented food: Proximate composition and microflora. Food Microbiology, 11(1), 47–55.

    Article  Google Scholar 

  • Sarkar, P. K., Jones, L. J., Craven, G. S., & Somerset, S. M. (1997). Oligosaccharide profiles of soybeans during kinema production. Letters in Applied Microbiology, 24(5), 337–339.

    Article  CAS  Google Scholar 

  • Sarkar, P. K., Morrison, E., Tinggi, U., Somerset, S. M., & Craven, G. S. (1998). B-group vitamin and mineral contents of soybeans during kinema production. Journal of the Science of Food and Agriculture, 78(4), 498–502.

    Article  CAS  Google Scholar 

  • Sauer, U., Cameron, D. C., & Bailey, J. E. (1998). Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnology and Bioengineering, 59(2), 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, R. K., Dutt, K., Agarwal, L., & Nayyar, P. (2007). A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresource Technology, 98(2), 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Schowen, R. L. (1998). Thiamin-dependent enzymes (L. Sinnott, Ed.). San Diego: Academic.

    Google Scholar 

  • Schyns, G., Potot, S., Geng, Y., Barbosa, T. M., Henriques, A., & Perkins, J. B. (2005). Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. Journal of Bacteriology, 187(23), 8127–8136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhon, K. K., Khanna, S., & Cameotra, S. S. (2012). Biosurfactant production and potential correlation with esterase activity. Journal of Petroleum & Environmental Biotechnology, 3(133), 2.

    Google Scholar 

  • Shimaoka, M., Takenaka, Y., Kurahashi, O., Kawasaki, H., & Matsui, H. (2007). Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli. Journal of Bioscience and Bioengineering, 103(3), 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Shrestha, A. K., Dahal, N. R., & Ndungutse, V. (2010). Bacillus fermentation of soybean: A review. Journal of Food Science and Technology Nepal, 6, 1–9.

    Google Scholar 

  • Siegert, P., Spitz, A., Maurer, K. H., Siegert, P., Spitz, A., Maurer, K. H., Siegert, P., Spitz, A., & Maurer, K. H. S. (2013). Google Patents, assignee. Detergents and cleaning agents containing proteases from Bacillus pumilus.

    Google Scholar 

  • Smirnov, V. V., Rudenko, A. V., Samgorodskaia, N. V., Sorokulova, I. B., Reznik, S. R., & Sergeichuk, T. M. (1994). Susceptibility to antimicrobial drugs of strains of bacilli used as a basis for various probiotics. Antibiotiki i Khimioterapiia, 39(4), 23–28.

    CAS  PubMed  Google Scholar 

  • Smith, L., & Hillman, J. D. (2008). Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Current Opinion in Microbiology, 11(5), 401–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokulova, I. B. (1996). A comparative study of the biological properties of Biosporin and other commercial Bacillus-based preparations. Mikrobiolohichnyĭ Zhurnal, 59(6), 43–49.

    Google Scholar 

  • Spinosa, M. R., Braccini, T., Ricca, E., De Felice, M., Morelli, L., Pozzi, G., et al. (2000). On the fate of ingested Bacillus spores. Research in Microbiology, 151(5), 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Stahmann, K. P., Revuelta, J. L., & Seulberger, H. (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Applied Microbiology and Biotechnology, 53, 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Stein, T., Heinzmann, S., Düsterhus, S., Borchert, S., & Entian, K.-D. (2005). Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. Journal of Bacteriology, 187(3), 822–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöver, A. G., & Driks, A. (1999). Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. Journal of Bacteriology, 181(5), 1664–1672.

    PubMed  PubMed Central  Google Scholar 

  • Streit, W. R., & Entcheva, P. (2003). Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Applied Microbiology and Biotechnology, 61(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, M. (2010). Amino acids, production processes. In: Encyclopedia of bioprocess technology (pp. 1–35). Wiley Online Library.

    Google Scholar 

  • Sumi, H., & Sumi, H. S. (2004). Google patents, assignee. Method for culturing Bacillus subtilis natto to produce water-soluble vitamin K and food product, beverage, or feed containing the cultured microorganism or the vitamin K derivative.

    Google Scholar 

  • Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia, 3(10), 1110–1111.

    Article  Google Scholar 

  • Suresh, K., Prabagaran, S. R., Sengupta, S., & Shivaji, S. (2004). Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Sutyak, K. E., Anderson, R. A., Dover, S. E., Feathergill, K. A., Aroutcheva, A. A., Faro, S., et al. (2008a). Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infectious Diseases in Obstetrics and Gynecology, 2008, 540758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutyak, K. E., Wirawan, R. E., Aroutcheva, A. A., & Chikindas, M. L. (2008b). Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 104(4), 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F., & Kondo, K. (2005). Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. Journal of Agricultural and Food Chemistry, 53(11), 4578–4582.

    Article  CAS  PubMed  Google Scholar 

  • Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., et al. (2002). Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial Agents and Chemotherapy, 46(2), 315–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimoto, H. (2010). Food applications of poly-gamma-glutamic acid. In Amino-acid homopolymers occurring in nature (pp. 155–168). Berlin: Springer.

    Google Scholar 

  • Tanimoto, H., Fox, T., Eagles, J., Satoh, H., Nozawa, H., Okiyama, A., et al. (2007). Acute effect of poly-γ-glutamic acid on calcium absorption in post-menopausal women. Journal of the American College of Nutrition, 26(6), 645–649.

    Article  CAS  PubMed  Google Scholar 

  • Tsuge, K., Ano, T., Hirai, M., Nakamura, Y., & Shoda, M. (1999). The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 43(9), 2183–2192.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto, Y., Kasai, M., & Kakuda, H. (2001). Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Bioscience, Biotechnology, and Biochemistry, 65(9), 2007–2015.

    Article  CAS  PubMed  Google Scholar 

  • Tuohy, K. M., Pinartâ-Gilberga, M., Jones, M., Hoyles, L., McCartney, A. L., & Gibson, G. R. (2007). Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. Journal of Applied Microbiology, 102(4), 1026–1032.

    CAS  PubMed  Google Scholar 

  • Twomey, D., Ross, R. P., Ryan, M., Meaney, B., & Hill, C. (2002). Lantibiotics produced by lactic acid bacteria: Structure, function and applications. In Lactic acid bacteria: Genetics, metabolism and applications (pp. 165–185). Dordrecht: Springer.

    Google Scholar 

  • Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.

    Article  PubMed  Google Scholar 

  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayalakshmi, S., Kumar, V., & Thankamani, V. (2013). Optimization and cultural characterization of Bacillus RV. B2. 90 producing alkalophilic thermophilic protease. Research Journal of Biotechnology, 8, 5.

    Google Scholar 

  • Wei, X., Tian, G., Ji, Z., & Chen, S. (2014). A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. Journal of Chemical Technology and Biotechnology, 90, 709–713.

    Google Scholar 

  • Wenzel, M., Mueller, A., Siemann-Herzberg, M., & Altenbuchner, J. (2011). Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Applied and Environmental Microbiology, 77(18), 6419–6425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, W., Nahvi, A., & Breaker, R. R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 419(6910), 952–956.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Feng, X., Zhang, D., Tang, B., Lei, P., Liang, J., et al. (2014). Enhanced poly (γ-glutamic acid) fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor. Bioresource Technology, 155, 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Liao, Y., Wang, B., Lin, Y., & Pan, L. (2011). Complete genome sequence of Bacillus amyloliquefaciens XH7, which exhibits production of purine nucleosides. Journal of Bacteriology, 193(19), 5593–5594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J.-H., Kang, S.-S., Lee, K.-C., Kho, Y. H., Choi, S. H., Kang, K. H., et al. (2001). Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 51(3), 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J.-H., Lee, C.-H., & Oh, T.-K. (2005). Bacillus cibi sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 55(2), 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Zakataeva, N. P., Gronskiy, S. V., Sheremet, A. S., Kutukova, E. A., Novikova, A. E., & Livshits, V. A. (2007). A new function for the Bacillus PbuE purine base efflux pump: Efflux of purine nucleosides. Research in Microbiology, 158(8), 659–665.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., Chen, G., Wang, Q., Zheng, S., Shu, L., & Liang, Z. (2014). Metabolic studies of temperature control strategy on poly (γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28. Bioresource Technology, 155, 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. Z., & Zhang, Y. H. P. (2012). One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Engineering in Life Science, 10(5), 398–406.

    Article  CAS  Google Scholar 

  • Zhang, G., Deng, A., Xu, Q., Liang, Y., Chen, N., & Wen, T. (2011a). Complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and ribavirin. Journal of Bacteriology, 193(12), 3142–3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W.-W., Yang, M.-M., Li, H.-X., & Wang, D. (2011b). Construction of recombinant Bacillus subtilis strains for efficient pimelic acid synthesis. Electronic Journal of Biotechnology, 14(6), 1–1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aydin Berenjian or Younes Ghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Mohkam, M., Nezafat, N., Berenjian, A., Negahdaripour, M., Behfar, A., Ghasemi, Y. (2016). Role of Bacillus Genus in the Production of Value-Added Compounds. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_1

Download citation

Publish with us

Policies and ethics