Scan Design: Basics, Advancements, and Vulnerabilities

  • Samah Mohamed Saeed
  • Sk Subidh Ali
  • Ozgur Sinanoglu
Chapter

Abstract

The increasing design complexity of modern Integrated Chips (IC) has reflected into exacerbated challenges in manufacturing testing. In this respect, scan is the most widely used design for testability (DfT) technique that overcomes the manufacturing test challenges by enhancing the access and thus, testability. However, scan can also open a back door to an attacker when implemented in security critical chips. Although some applications disable access to the scan chains upon manufacturing test, other applications require this access to enable in-field testing and debugging capabilities. This chapter aims at providing testable yet secure scan-based DfT techniques. We first describe various cost-effective DfT techniques to overcome the test challenges, such as low controllability and observability, which in turn leads to high test cost and low test quality. In particular, we review the challenges and opportunities in widely utilized compression-based scan design. We then highlight the security vulnerabilities of basic scan as well as these advanced DfT techniques. We describe multiple scan attacks that misuse representative test infrastructures. A detailed analysis is also performed to figure out the fundamental limitations of these attacks.

Keywords

AES Security DfT Scan Chain Decompressor Compactor Scan Attack Testability Test-Mode-Only Attack 

References

  1. 1.
    Bushnell M, Agrawal V. Essentials of electronic testing for digital. Memory and mixed-signal VLSI circuits. Springer; 2005.Google Scholar
  2. 2.
    Rajski J, Tyszer J, Kassab M, Mukherjee N, Thompson R, Tsai KH, et al. Embedded deterministic test for low cost manufacturing test. In: Proceedings of IEEE international test conference, 2002. p. 301–10.Google Scholar
  3. 3.
    Barnhart C, Brunkhorst V, Distler F, Farnsworth O, Keller B, Koenemann B. OPMISR: the foundation for compressed ATPG vectors. In: Proceedings of IEEE international test conference, 2001. p. 748–57.Google Scholar
  4. 4.
    Samaranayake S, Gizdarski E, Sitchinava N, Neuveux F, Kapur R, Williams TW. A reconfigurable shared scan-in architecture. In: Proceedings of IEEE VLSI test symposium, 2003. p. 9–14.Google Scholar
  5. 5.
    Touba NA. Survey of test vector compression techniques. IEEE Des Test Comput. 2006;23(4):294–303.CrossRefGoogle Scholar
  6. 6.
    Pandey AR, Patel JH. An incremental algorithm for test generation in illinois scan architecture based designs. In: Proceedings of design, automation and test in Europe conference and exhibition, 2002. p. 368–75.Google Scholar
  7. 7.
    Breuer MA. A note on three-valued logic simulation. IEEE Trans Comput. 1972;21(4):399–402.CrossRefMATHGoogle Scholar
  8. 8.
    IEEE standard hardware description language based on the verilog(r) hardware description language. IEEE Std 1364–1995, 1996. p. 1–688.Google Scholar
  9. 9.
    Savir J. Reducing the misr size. IEEE Trans Comput. 1996;45(8):930–8.Google Scholar
  10. 10.
    Rajski W, Rajski J. Modular compactor of test responses. In: Proceedings of IEEE VLSI test symposium, 2006. p. 10.Google Scholar
  11. 11.
    Pouya B, Touba NA. Synthesis of zero-aliasing elementary-tree space compactors. In: Proceedings of IEEE VLSI test symposium, 1998. p. 70–7.Google Scholar
  12. 12.
    Mitra S, Kim KS. X-compact: an efficient response compaction technique for test cost reduction. In: Proceedings of IEEE international test conference, 2002. p. 311–20.Google Scholar
  13. 13.
    Wohl P, Waicukauski JA, Ramnath S. Fully x-tolerant combinational scan compression. In: Proceedings IEEE international test conference, Oct 2007. p. 1–10.Google Scholar
  14. 14.
    Chickermane V, Foutz B, Keller B. Channel masking synthesis for efficient on-chip test compression. In: Proceedings of IEEE international test conference, 2004. p. 452–61.Google Scholar
  15. 15.
    Saeed SM, Sinanoglu O. Multi-modal response compaction adaptive to x-density variation. IET Comput Dig Techniq. 2012;6(2):69–77.CrossRefGoogle Scholar
  16. 16.
    Saeed SM, Sinanoglu O. Xor-based response compactor adaptive to x-density variation. In: Proceedings of IEEE Asian test symposium, 2010. p. 212–17.Google Scholar
  17. 17.
    IEEE standard test access port and boundary scan architecture. IEEE Std 1149.1-2001, July 2001. p. 1–212.Google Scholar
  18. 18.
    Yang B, Wu K, Karri R. Scan based side channel attack on dedicated hardware implementations of data encryption standard. In: Proceedings of IEEE international test conference, 2004. p. 339–44.Google Scholar
  19. 19.
    Yang B, Wu K, Karri R. Secure scan: a design-for-test architecture for crypto chips. In: Joyner Jr. WH, Martin G, Kahng AB, editors. ACM/IEEE design automation conference; 2005. p. 135–40.Google Scholar
  20. 20.
    Daemen J, Rijmen V. The design of Rijndael. New York: Springer Inc.; 2002.Google Scholar
  21. 21.
    Ali SS, Sinanoglu O, Saeed SM, Karri R. New scan-based attack using only the test mode. In: Proceeding of IEEE VLSI-SoC, 2013. p. 234–39.Google Scholar
  22. 22.
    Nyberg K. Generalized feistel networks. In: Kim K, Mat-Sumoto T, editors. ASIACRYPT, volume 1163 of lecture notes in computer science. Springer; 1996. p. 91–104.Google Scholar
  23. 23.
    Kapur R. Security vs. test quality: are they mutually exclusive? In: Proceeding IEEE test conference, 2004. p. 1414.Google Scholar
  24. 24.
    DaRolt J, Di Natale G, Flottes ML, Rouzeyre B. Are advanced DfT structures sufficient for preventing scan-attacks? In: Proceedings of IEEE VLSI test symposium, 2012. p. 246–51.Google Scholar
  25. 25.
    Ege B, Das A, Ghosh S, Verbauwhede I. Differential scan attack on AES with X-tolerant and X-masked test response compactor. In: IEEE DSD, 2012. p. 545–52Google Scholar
  26. 26.
    DaRolt J, Di Natale G, Flottes ML, Rouzeyre B. Scan attacks and countermeasures in presence of scan response compactors. In: Proceeding of European test symposium, 2011. p. 19–24.Google Scholar
  27. 27.
    Hely D, Bancel F, Flottes ML, Rouzeyre B. Test control for secure scan designs. In: Proceedings of IEEE European symposium on test, 2005. p. 190–5.Google Scholar
  28. 28.
    Ali SS, Saeed SM, Sinanoglu O, Karri R. Scan attack in presence of mode- reset countermeasure. In: Proceeding of IEEE international on-line testing symposium, 2013. p. 230–1.Google Scholar
  29. 29.
    Saeed SM, Ali SS, Sinanoglu O, Karri R. Test-mode-only scan attack and countermeasure for contemporary scan architectures. In: Proceedings of IEEE international test conference, 2014. p. 1–8.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Samah Mohamed Saeed
    • 1
  • Sk Subidh Ali
    • 2
  • Ozgur Sinanoglu
    • 2
  1. 1.University of WashingtonTacomaUSA
  2. 2.New York UniversityAbu DhabiUAE

Personalised recommendations