Advertisement

Reaching the Distant Universe with ALMA

  • Corentin SchreiberEmail author
Chapter
  • 243 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In my first published paper (Schreiber et al. 2015, see also Chap.  2) we were able to measure FIR-based star formation rates for a large sample of galaxies, thanks to the deep Herschel surveys that were observed during the lifetime of the satellite. This allowed us to put new constraints on the properties (and existence) of the Main Sequence of star-forming galaxies, from \(z=4\) to the present day. However, as can be seen from Fig.  2.13, most of our results at \(z=4\) are based on extrapolations of a single measurement, obtained by stacking the most massive galaxies (\(M_*> 3\times 10^{11}\,\mathrm{M}_\odot \)). In fact, we were able to probe only a tenth of the total \(\mathrm{SFR}\) density at these epochs: having reached the limits of what Herschel alone can provide, learning more about the \(z\ge 4\) Universe calls for more powerful tools.

Keywords

Star Formation Point Spread Function Angular Resolution Main Sequence Stellar Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. D.M. Alexander, I. Smail, F.E. Bauer et al., Nature 434, 738 (2005)ADSCrossRefGoogle Scholar
  2. ALMA Partnership, C. Vlahakis, T.R. Hunter et al., ApJ 808, L4 (2015)Google Scholar
  3. E. Bertin, S. Arnouts, A&AS 117, 393 (1996)ADSCrossRefGoogle Scholar
  4. M. Béthermin, C. De Breuck, M. Sargent, E. Daddi, A&A 576, L9 (2015)ADSCrossRefGoogle Scholar
  5. R.J. Bouwens, G.D. Illingworth, P.A. Oesch et al., ApJ 737, 90 (2011)ADSCrossRefGoogle Scholar
  6. G. Bruzual, S. Charlot, MNRAS 344, 1000 (2003)ADSCrossRefGoogle Scholar
  7. V. Buat, S. Heinis, M. Boquien et al., A&A 561, A39 (2014)ADSCrossRefGoogle Scholar
  8. V. Buat, S. Noll, D. Burgarella et al., A&A 545, A141 (2012)ADSCrossRefGoogle Scholar
  9. D. Calzetti, L. Armus, R.C. Bohlin et al., ApJ 533, 682 (2000)ADSCrossRefGoogle Scholar
  10. P.L. Capak, C. Carilli, G. Jones et al., Nature 522, 455 (2015)ADSCrossRefGoogle Scholar
  11. C.L. Carilli, F. Walter, ARA&A 51, 105 (2013)ADSCrossRefGoogle Scholar
  12. R. Chary, D. Elbaz, ApJ 556, 562 (2001)ADSCrossRefGoogle Scholar
  13. E. Daddi, F. Bournaud, F. Walter et al., ApJ 713, 686 (2010)ADSCrossRefGoogle Scholar
  14. E. Daddi, H. Dannerbauer, D. Liu et al., A&A 577, A46 (2015)ADSCrossRefGoogle Scholar
  15. R. Davé, K. Finlator, B.D. Oppenheimer, MNRAS 416, 1354 (2011)ADSCrossRefGoogle Scholar
  16. T. Díaz-Santos, L. Armus, V. Charmandaris et al., ApJ 774, 68 (2013)ADSCrossRefGoogle Scholar
  17. J.L. Donley, A.M. Koekemoer, M. Brusa et al., ApJ 748, 142 (2012)ADSCrossRefGoogle Scholar
  18. D. Elbaz, M. Dickinson, H.S. Hwang et al., A&A 533, 119 (2011)ADSCrossRefGoogle Scholar
  19. D. Elbaz, K. Jahnke, E. Pantin, D. Le Borgne, G. Letawe, A&A 507, 1359 (2009)ADSCrossRefGoogle Scholar
  20. V. González, I. Labbé, R.J. Bouwens et al., ApJ 713, 115 (2010)ADSCrossRefGoogle Scholar
  21. J. Graciá-Carpio, E. Sturm, S. Hailey-Dunsheath et al., ApJ 728, L7 (2011)ADSCrossRefGoogle Scholar
  22. S. Heinis, V. Buat, M. Béthermin et al., MNRAS 437, 1268 (2014)ADSCrossRefGoogle Scholar
  23. G. Helou, S. Malhotra, D.J. Hollenbach, D.A. Dale, A. Contursi, ApJ 548, L73 (2001)ADSCrossRefGoogle Scholar
  24. J.A. Hodge, A. Karim, I. Smail et al., ApJ 768, 91 (2013)ADSCrossRefGoogle Scholar
  25. J.A. Högbom, A&A 15, 417 (1974)Google Scholar
  26. O. Ilbert, H.J. McCracken, O. Le Fèvre et al., A&A 556, 55 (2013)ADSCrossRefGoogle Scholar
  27. R.C. Kennicutt Jr., ARA&A 36, 189 (1998)Google Scholar
  28. M. Kriek, P.G. van Dokkum, I. Labbé et al., ApJ 700, 221 (2009)Google Scholar
  29. I. Labbé, P.A. Oesch, R.J. Bouwens et al., ApJ 777, L19 (2013)ADSCrossRefGoogle Scholar
  30. D. Lutz, R. Maiolino, H.W.W. Spoon, A.F.M. Moorwood, A&A 418, 465 (2004)ADSCrossRefGoogle Scholar
  31. B. Magnelli, D. Lutz, A. Saintonge et al., A&A 561, 86 (2014)ADSCrossRefGoogle Scholar
  32. I. Martí-Vidal, W.H.T. Vlemmings, S. Muller, S. Casey, A&A 563, A136 (2014)ADSCrossRefGoogle Scholar
  33. G.R. Meurer, T.M. Heckman, D. Calzetti, ApJ 521, 64 (1999)ADSCrossRefGoogle Scholar
  34. A. Muzzin, D. Marchesini, M. Stefanon et al., ApJS 206, 8 (2013)ADSCrossRefGoogle Scholar
  35. M. Pannella, C.L. Carilli, E. Daddi et al., ApJ 698, L116 (2009)ADSCrossRefGoogle Scholar
  36. M. Pannella, D. Elbaz, E. Daddi et al., ApJ 807, 141 (2015)ADSCrossRefGoogle Scholar
  37. C.Y. Peng, L.C. Ho, C.D. Impey, H. Rix, AJ 124, 266 (2002)ADSCrossRefGoogle Scholar
  38. B. Salmon, C. Papovich, S.L. Finkelstein et al., ApJ 799, 183 (2015)ADSCrossRefGoogle Scholar
  39. E.E. Salpeter, ApJ 121, 161 (1955)ADSCrossRefGoogle Scholar
  40. E. Schinnerer, V. Smolčić, C.L. Carilli et al., ApJS 172, 46 (2007)ADSCrossRefGoogle Scholar
  41. C. Schreiber, M. Pannella, D. Elbaz et al., A&A 575, A74 (2015)ADSCrossRefGoogle Scholar
  42. C. Schreiber, M. Pannella, R. Leiton et al. (2016). ArXiv e-prints, arXiv:1606.06252
  43. G.J. Stacey, N. Geis, R. Genzel et al., ApJ 373, 423 (1991)ADSCrossRefGoogle Scholar
  44. D.P. Stark, R.S. Ellis, A. Bunker et al., ApJ 697, 1493 (2009)ADSCrossRefGoogle Scholar
  45. D.P. Stark, M.A. Schenker, R. Ellis et al., ApJ 763, 129 (2013)ADSCrossRefGoogle Scholar
  46. C.M.S. Straatman, I. Labbé, L.R. Spitler et al., ApJ 783, L14 (2014)ADSCrossRefGoogle Scholar
  47. A. Weiß, C. De Breuck, D.P. Marrone et al., ApJ 767, 88 (2013)ADSCrossRefGoogle Scholar
  48. T.L. Wilson, K. Rohlfs, S. Hüttemeister, Tools of Radio Astronomy (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Leiden ObservatoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations