Skip to main content

Foam Targets for Enhanced Ion Acceleration

  • Chapter
  • First Online:
High Field Plasmonics

Part of the book series: Springer Theses ((Springer Theses))

  • 585 Accesses

Abstract

The object of the present chapter is the study (both experimental and numerical) of ion acceleration schemes with multi-layer foam attached targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TNSA scheme provides very broad energy spectra, whereas RPA and shock acceleration schemes should allow for narrower spectra.

  2. 2.

    An upgrade to a 4 PW system is currently ongoing.

  3. 3.

    See Chap. 4 for a detailed description of these diagnostics.

  4. 4.

    The vacuum chamber was opened once per day to prepare the setup.

  5. 5.

    The filling factor is the volume fraction actually occupied by solid-density carbon.

  6. 6.

    Though a proper estimation of the total accelerated charge could not be performed.

  7. 7.

    These holes are visible even with naked eye, for instance looking at a backlit target.

References

  1. M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B.M. Luther, L. Yin, S. Wang, J.J. Rocca, Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Phot. 7, 796–800 (2013)

    Article  Google Scholar 

  2. C.E. Max, J. Arons, A.B. Langdon, Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209–212 (1974)

    Article  ADS  Google Scholar 

  3. S.V. Bulanov, V.S. Khoroshkov, Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28(5), 453–456 (2002)

    Article  ADS  Google Scholar 

  4. S. Busold, D. Schumacher, C. Brabetz, D. Jahn, F. Kroll, O. Deppert, U. Schramm, T.E. Cowan, A. Blažević, V. Bagnoud, M. Roth, Towards highest peak intensities for ultra-short MeV-range ion bunches. Sci. Rep. 5, 12459 (2015)

    Google Scholar 

  5. A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107(7), 071301 (2010)

    Article  ADS  Google Scholar 

  6. G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Ion irradiation and defect formation in single layer graphene. Carbon 47(14), 3201–3207 (2009)

    Article  Google Scholar 

  7. I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, C. Chester, J. Cortez, M.E. Donovan, G. Dyer, E.W. Gaul, D. Hamilton, D. Kuk, A.C. Lestrade, C. Wang, T. Ditmire, B.M. Hegelich, Ultrashort pulsed neutron source. Phys. Rev. Lett. 113, 184801 (2014). Oct

    Article  ADS  Google Scholar 

  8. Y. Arikawa, M. Utsugi, A. Morace, T. Nagai, Y. Abe, S. Kojima, S. Sakata, H. Inoue, S. Fujioka, Z. Zhang, H. Chen, J. Park, J. Williams, T. Morita, Y. Sakawa, Y. Nakata, J. Kawanaka, T. Jitsuno, N. Sarukura, N. Miyanaga, H. Azechi, High-intensity neutron generation via laser-driven photonuclear reaction. Plasma Fusion Res. 10, 2404003 (2015)

    Google Scholar 

  9. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802 (2013). Jan

    Article  ADS  Google Scholar 

  10. C. Freiburghaus, S. Rosswog, F.-K. Thielemann, r-process in neutron star mergers. Astrophys. J. Lett. 525(2), L121 (1999)

    Article  ADS  Google Scholar 

  11. J. Benitez, A. Hodgkinson, M. Johnson, T. Loew, C. Lyneis, L. Phair, Development of ion beams for space effects testing using an ECR ion source. AIP Conf. Proc. 1525(1), 503–506 (2013)

    Article  ADS  Google Scholar 

  12. M. Gerard, B. Brocklesby, T. Tajima, J. Jens Limpert, The future is fibre accelerators. Nat. Photon. 7(4), 258–261 (2013)

    Article  ADS  Google Scholar 

  13. S. Tochitsky, C. Gong, J. Pigeon, F. Fiuza, C. Joshi, He ion acceleration in near critical density plasma, in CLEO: 2015 (Optical Society of America, 2015), p. FTh1C.4

    Google Scholar 

  14. J. Kim, M. Gauthier, B. Aurand, C. Curry, S. Goede, C. Goyon, J. Williams, S. Kerr, J. Ruby, A. Propp, et al., Laser-driven proton and deuteron acceleration from a pure solid-density H2/D2 cryogenic jet. Bull. Am. Phys. Soc. 60 (2015)

    Google Scholar 

  15. L. Di Lucchio, A.A. Andreev, P. Gibbon, Ion acceleration by intense, few-cycle laser pulses with nanodroplets. Phys. Plasmas 22(5), 053114 (2015)

    Article  ADS  Google Scholar 

  16. M. Passoni, A. Zani, A. Sgattoni, D. Dellasega, A. Macchi, I. Prencipe, V. Floquet, P. Martin, T.V. Liseykina, T. Ceccotti, Energetic ions at moderate laser intensities using foam-based multi-layered targets. Plasma Phys. Control. Fusion 56(4), 045001 (2014)

    Article  ADS  Google Scholar 

  17. Y.T. Li, Z.M. Sheng, Y.Y. Ma, Z. Jin, J. Zhang, Z.L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K.A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.Q. Zhang, L. Zhang, Y.J. Tang, Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams. Phys. Rev. E 72, 066404 (2005)

    Article  ADS  Google Scholar 

  18. L. Willingale, S.R. Nagel, A.G.R. Thomas, C. Bellei, R.J. Clarke, A.E. Dangor, R. Heathcote, M.C. Kaluza, C. Kamperidis, S. Kneip, K. Krushelnick, N. Lopes, S.P.D. Mangles, W. Nazarov, P.M. Nilson, Z. Najmudin, Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125002 (2009)

    Article  ADS  Google Scholar 

  19. T. Nakamura, M. Tampo, R. Kodama, S.V. Bulanov, M. Kando, Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17(11), 053114 (2010)

    Article  Google Scholar 

  20. C. Benedetti, A. Sgattoni, G. Turchetti, P. Londrillo, ALaDyn: a high-accuracy pic code for the Maxwell–Vlasov equations. IEEE Trans. Plasma Sci. 36(4), 1790–1798 (2008)

    Article  ADS  Google Scholar 

  21. A. Sgattoni, P. Londrillo, A. Macchi, M. Passoni, Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85, 036405 (2012)

    Article  ADS  Google Scholar 

  22. J.H. Bin, W.J. Ma, H.Y. Wang, M.J.V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P.S. Foster, B. Dromey, X.Q. Yan, R. Ramis, J. Meyer-terVehn, M. Zepf, J. Schreiber, Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 115, 064801 (2015)

    Article  ADS  Google Scholar 

  23. T.J. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, T.M. Jeong, J. Lee, Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification ti:sapphire laser. Opt. Express 20(10), 10807–10815 (2012)

    Article  ADS  Google Scholar 

  24. T.M. Jeong, J. Lee, Femtosecond petawatt laser. Ann. Phys. 526(3–4), 157–172 (2014)

    Article  Google Scholar 

  25. I. Prencipe, A. Sgattoni, D. Dellasega, L. Fedeli, L. Cialfi, I.W. Choi, I.J. Kim, K.A. Janulewicz, K.F. Kakolee, H.W. Lee, J.H. Sung, S.K. Lee, C.H. Nam, M. Passoni, Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Control. Fusion 58(3), 034019 (2016)

    Article  ADS  Google Scholar 

  26. Wikipedia (figure released as “public domain”). Configuration PLD, 2006. [Online] Accessed 16 May 2016

    Google Scholar 

  27. M. Lorenz, M.S. Ramachandra Rao, 25 years of pulsed laser deposition. J. Phys. D Appl. Phys. 47(3), 030301 (2014)

    Article  ADS  Google Scholar 

  28. A. Zani, D. Dellasega, V. Russo, M. Passoni, Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358–365 (2013)

    Article  Google Scholar 

  29. I. Prencipe, D. Dellasega, A. Zani, D. Rizzo, M. Passoni, Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation. Sci. Technol. Adv. Mater. 16(2), 025007 (2015)

    Article  Google Scholar 

  30. T. Nakamura, S.V. Bulanov, T.Z. Esirkepov, M. Kando, High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002 (2010)

    Article  ADS  Google Scholar 

  31. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, L.O. Silva, W.B. Mori, C. Joshi, Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8(1), 95–99 (2012)

    Article  Google Scholar 

  32. T.A. Witten, L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

  33. T.A. Witten, L.M. Sander, Diffusion-limited aggregation. Phys. Rev. B 27, 5686–5697 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fedeli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fedeli, L. (2017). Foam Targets for Enhanced Ion Acceleration. In: High Field Plasmonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44290-7_5

Download citation

Publish with us

Policies and ethics