Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 533 Accesses

Abstract

The chapter provides an introduction to the fundamentals of system experiments, which are are widely used to test optoelectronic devices for optical communication applications under system-like operation. An overview of various modulation formats and configurations of test setups being relevant for this book are given. Important terms and parameters are defined and introduced such as transmitter and receiver types, signal quality evaluation and the input-power dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notation is used throughout this thesis instead of PRBS \(2^x-1\).

  2. 2.

    The standard is typically, that the word formed only by zeros is missing.

  3. 3.

    Recording a complete PRBS-31 requires a very fast 2 GB memory whereas a PRBS-23 requires only 8 MB memory [3].

  4. 4.

    Indeed, components regenerating the signal quality are available too, but will not be considered here.

  5. 5.

    This is only valid for optically pre-amplified receivers as the optical amplifier changes the OSNR in front of the detection.

  6. 6.

    Please remember, the phase-coded signal can also exhibit amplitude changes in the symbol transitions as explained before.

  7. 7.

    Q stands for quality.

References

  1. S.W. Golomb, Shift Register Sequences. Revised (Aegean Park Press, Walnut Creek, 1981)

    Google Scholar 

  2. F.J. MacWilliams, N.J.A. Sloane, Pseudo-random sequences and arrays. Proc. IEEE 64(12), 1715–1729 (1976)

    Article  MathSciNet  Google Scholar 

  3. M. Müller, Pseudo-random binary sequences, in Digital Communications Test and Measurement: High-Speed Physical Layer Characterization, 1st edn., ed. by D. Derickson, M. Muller (Prentice Hall, Upper Saddle River, 2007), p. 976

    Google Scholar 

  4. M.P. Clark, Data Networks, IP and the Internet: Protocols, Design and Operation, 1st edn. (Wiley, London, 2003), p. 848

    Book  Google Scholar 

  5. P.J. Winzer, R.J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94(5), 952–985 (2006)

    Article  Google Scholar 

  6. P.J. Winzer, Modulation and multiplexing in optical communication systems. IEEE LEOS Newsl. http://www.photonicssociety.org/content/newsletters 2009, 4–10

  7. P.J. Winzer, Modulation and multiplexing in optical communications, in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2009, CTuL3

    Google Scholar 

  8. M. Nakazawa, K. Kikuchi, T. Miyazaki (eds.), High Spectral Density Optical Communication Technologies, 1st edn. (Springer, Berlin, 2010)

    Google Scholar 

  9. G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (John Wiley, London, 2012)

    Google Scholar 

  10. S. Ferber et al., Comparison of DPSK and OOK modulation format in 160 Gbit/s transmission system. Electron. Lett. 39(20), 1458–1459 (2003)

    Article  Google Scholar 

  11. A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Light. Technol. 23(1), 115–130 (2005)

    Article  ADS  Google Scholar 

  12. Wikipedia. https://en.wikipedia.org/wiki/Modulation 2015

  13. E.L. Wooten et al., A review of lithium niobate modulators for fiber-optic-communications systems. IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)

    Article  Google Scholar 

  14. M. Seimetz, High-Order Modulation for Optical Fiber Transmission, 1st edn. (Springer, Berlin, 2009), p. 251

    Book  Google Scholar 

  15. T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications, 1st edn. (Springer, Berlin, 1988), p. 278

    Google Scholar 

  16. S.B. Alexander, Optical Communication Receiver Design, 1st edn. (SPIE Press, Bellingham, 1997)

    Book  Google Scholar 

  17. S. Pachnicke, Fiber-Optic Transmission Networks: Efficient Design and Dynamic Operation, 1st edn. (Springer, Berlin, 2011)

    Google Scholar 

  18. J. Li et al., Free-space optical delay interferometer with tunable delay and phase. Opt. Express 19(12), 11654–11666 (2011)

    Article  ADS  Google Scholar 

  19. J.M. Kahn, K.-P. Ho, Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004)

    Article  Google Scholar 

  20. E. Ip et al., Coherent detection in optical fiber systems. Opt. Express 16(2), 753–791 (2008)

    Article  ADS  Google Scholar 

  21. T.G. Hodgkinson et al., In-phase and quadrature detection using 90\(^{\circ }\) optical hybrid receiver: experiments and design considerations. IEE Proc. Optoelectron. 135(3), 260–267 (1988)

    Article  Google Scholar 

  22. K. Kikuchi, Coherent optical communications: historical perspectives and future directions, in High Spectral Density Optical Communication Technologies, 1st edn., ed. by M. Nakazawa, K. Kikuchi, T. Miyazaki (Springer, Berlin, 2010), p. 338

    Google Scholar 

  23. E.E. Bergmann, J. Thompson, Sensitivity testing in optical digital communication, in Digital Communications Test and Measurement: High-Speed Physical Layer Characterization, 1st edn., ed. by D. Derickson, M. Muller (Prentice Hall, Upper Saddle River, 2007), p. 976

    Google Scholar 

  24. A. Malik et al., Network economics of optical transport networks with soft decision forward error correction (SD-FEC) technology. Photonic Netw. Commun. 28(2), 115–122 (2014)

    Article  Google Scholar 

  25. Infinera. Soft decision forward error correction for coherent super-channels. WHITE PAPER (2013)

    Google Scholar 

  26. I.P. Kaminow, T. Li, A.E. Willner (eds.), Optical Fiber Telecommunications Volume VIB: Systems and Networks, 6th edn. (Academic Press, London, 2013), p. 1148

    Google Scholar 

  27. K. Iniewski (ed.), Convergence of Mobile and Stationary Next-Generation Networks, 1st edn. (Wiley, London, 2011)

    Google Scholar 

  28. C. Meuer, GaAs-based quantum-dot semiconductor optical amplifiers at 1.3 \(\upmu {\rm {m}}\) for all-optical networks. Doctoral Thesis. Technical University of Berlin, 2011, p. 155

    Google Scholar 

  29. J. Thompson, E.E. Bergmann, Stress tests in high-speed serial links, in Digital Communications Test and Measurement: High-Speed Physical Layer Characterization, 1st edn., ed. by D. Derickson, M. Muller (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  30. M. Jinno, M. Abe, H. Liang, All-optical regenerator based on nonlinear fibre Sagnac interferometer. Electron. Lett. 28(14), 1350–1352 (1992)

    Article  Google Scholar 

  31. S. Radic et al., All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber. IEEE Photonics Technol. Lett. 15(7), 957–959 (2003)

    Article  ADS  Google Scholar 

  32. P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in European Conference and Exhibition on Optical Communication (ECOC), 1998, p. 475

    Google Scholar 

  33. C. Porzi et al., All-optical regeneration of 40 Gb/s NRZ-DPSK signals in a single SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC), 2013, JW2A.55

    Google Scholar 

  34. G.D. Le Cheminant, Characterizing high-speed digital communications signals and systems with the equivalaent-time sampling oscilloscope, in Digital Communications Test and Measurement: High-Speed Physical Layer Characterization, 1st edn., ed. by D. Derickson, M. Muller (Prentice Hall, Upper Saddle River, 2007), p. 976

    Google Scholar 

  35. Anritsu, Application note, Q factor measurement eye diagram measurement, SDHSONET pattern editing. WHITE PAPER (2000)

    Google Scholar 

  36. W. Freude et al., Quality metrics for optical signals Eye diagram, Q-factor, OSNR, EVM and BER, in International Conference on Transparent Optical Networks (ICTON), vol. 1, 2012, Mo.B1.5

    Google Scholar 

  37. R. Schmogrow et al., Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonics Technol. Lett. 24(1), 61–63 (2012)

    Article  ADS  Google Scholar 

  38. R.A. Shafik, S. Rahman, R. Islam, On the extended relationships among EVM, BER and SNR as performance metrics. International Conference on Electrical and Computer Engineering (ICECE), 2006, pp. 408–411

    Google Scholar 

  39. R. Bonk et al., The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications. IEEE Photon. J. 3(6), 1039–1053 (2011)

    Article  Google Scholar 

  40. R. Bonk, Linear and nonlinear semiconductor optical amplifiers for next-generation optical networks. Doctoral Thesis. Karlsruher Institut für Technologie, 2013, p. 278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmeckebier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmeckebier, H. (2017). Introduction to System Experiments. In: Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44275-4_4

Download citation

Publish with us

Policies and ethics