45S5 Bioglass Based Scaffolds for Skeletal Repair

  • Anthony W. WrenEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)


Glass as a material presents significant potential for restoration of bone tissue. Glass can be designed to contain ions that positively influence bone metabolism in addition to stimulating additional pro-healing processes such as angiogenesis. Specifically, Bioglass® (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses), a SiO2–CaO–Na2O–P2O5 glass composition has been extensively studied since it was discovered that this particular composition can bond to bone and soft tissue in vivo. This property in particular led to the development of porous scaffolds that can be utilized to permit the ingrowth of bone and soft tissue, in addition to allowing free movement of host cells and physiological fluids that can further improve the healing rate. Many studies and processing methods have been conducted to optimize Bioglass® scaffolds porosity and interconnectivity in addition to improving some of the limitation such as the mechanical integrity. The diversity of studies that have been conducted on this particular composition greatly supports the potential that glassy materials encompass for scaffold materials applied to skeletal repair.


Vascular Endothelial Growth Factor Bone Tissue Simulated Body Fluid Bioactive Glass Strontium Ranelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Martini, F.R.: Fundamentals of Anatomy and Physiology. Pearson Eductaion International, San Francisco (2006)Google Scholar
  2. 2.
    Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds.): Radionuclide and Hybrid Bone Imaging. Springer, Berlin (2013)Google Scholar
  3. 3.
    Kular, J., Tickner, J., Chim, S.M., Xu, J.: An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45, 863–873 (2012)CrossRefGoogle Scholar
  4. 4.
    Faour, O., Dimitriou, R., Cousins, C.A., Giannoudis, P.V.: The use of bone graft substitutes in large cancellous voids: any specific needs? Injury 42, S87–S90 (2011)CrossRefGoogle Scholar
  5. 5.
    Hench, L.L.: The story of bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  6. 6.
    Hench, L.L.: Genetic design of bioactive glass. J. Eur. Ceram. Soc. 29, 1257–1265 (2009)CrossRefGoogle Scholar
  7. 7.
    Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRefGoogle Scholar
  8. 8.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  9. 9.
    Haimi, S., Gorianc, G., Moimas, L., Lindroos, B., Huhtala, H., Raty, S., Kuokkanen, H., Sandor, G.K., Schmid, C., Miettinen, S., Suuronen, R.: Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 5, 3122–3131 (2009)CrossRefGoogle Scholar
  10. 10.
    Vargas, G.E., Mesones, R.V., Bretcanu, O., López, J.M.P., Boccaccini, A.R., Gorustovich, A.: Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 5, 374–380 (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, Q.-Z., Rezwan, K., Françon, V., Armitage, D., Nazhat, S.N., Jones, F.H., Boccaccini, A.R.: Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 3, 551–562 (2007)CrossRefGoogle Scholar
  12. 12.
    Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A., Rehman, I.: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 4, 432–440 (2008)CrossRefGoogle Scholar
  13. 13.
    Hatton, P.V., Hurrell-Gillingham, K., Reaney, I.M., Miller, C.A., Crawford, A.: Devitrification of ionomer glass and its effect on the in vitro biocompatability of glass ionomer cements. Biomaterials 24, 3153–3160 (2003)CrossRefGoogle Scholar
  14. 14.
    Hatton, P.V., Hurrell-Gillingham, K., Brook, I.M.: Biocompatability of glass ionomer bone cements. J. Dent. 34, 598–601 (2006)CrossRefGoogle Scholar
  15. 15.
    Ravarian, R., Moztarzadeh, F., Hashjin, M.S., Rabiee, S.M., Khoshakhlagh, P., Tahriri, M.: Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram. Int. 36, 291–297 (2010)CrossRefGoogle Scholar
  16. 16.
    Bortot, M.B., Prastalo, S., Prado, M.: Production and characterization of glass microspheres for hepatic cancer treatment. Proced. Mater. Sci. 1, 351–358 (2012)CrossRefGoogle Scholar
  17. 17.
    Anderson, J.H., Goldberg, J.A., Bessent, R.G., Kerr, D.J., McKillop, J.H., Stewart, I., Cooke, T.G., McArdle, C.S.: Glass yttrium-90 microspheres for patients with colorectal liver metastases. Radiother. Oncol. 25, 137–139 (1992)CrossRefGoogle Scholar
  18. 18.
    Rahaman, M.N., Day, D.E., Sonny Bal, B., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  19. 19.
    Shelby, J.E.: Introduction to Glass Science and Technology, 2nd edn. The Royal Socitey of Chemistry, Cambridge (2005)Google Scholar
  20. 20.
    Clark, D.E., Dilmore, M.F., Ethridge, E.C., Hench, L.L.: Aqueous corrosion of soda-silicate and soda-lime-silicate glass. J. Am. Ceram. Soc. 59, 62–65 (1976)CrossRefGoogle Scholar
  21. 21.
    Serra, J., Gonzalez, P., Liste, S., Chiussi, S., Leon, B., Perez-amor, M., Ylanen, H.O., Hupa, M.: Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J. Mater. Sci. Mater. Med. 13, 1221–1225 (2002)CrossRefGoogle Scholar
  22. 22.
    Paul A.: Chemistry of Glasses. 2nd edn. Chapman and Hall, London (1990)Google Scholar
  23. 23.
    Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)CrossRefGoogle Scholar
  24. 24.
    Marie, P.J.: Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos. Int. 16, S7–S10 (2005)CrossRefGoogle Scholar
  25. 25.
    Marie, P.J.: Strontium ranelate: new insights into its dual mode of action. Bone 40(1), S5–S8 (2007)CrossRefGoogle Scholar
  26. 26.
    Jones, J.R., Ehrenfried, L.M., Hench, L.L.: Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006)CrossRefGoogle Scholar
  27. 27.
    Bellucci, D., Cannillo, V., Sola, A., Chiellini, F., Gazzarri, M., Migone, C.: Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceram. Int. 37, 1575–1585 (2011)CrossRefGoogle Scholar
  28. 28.
    Wren, A.W., Coughlan, A., Smale, K.E., Misture, S.T., Mahon, B.P., Clarkin, O.M., Towler, M.R.: Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications. J. Mater. Sci. Mater. Med. 23, 2881–2891 (2012)CrossRefGoogle Scholar
  29. 29.
    Ochoa, I., Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M., Yunos, D.M., Boccaccini, A.R.: Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J. Biomech. 42, 257–260 (2009)CrossRefGoogle Scholar
  30. 30.
    Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006)CrossRefGoogle Scholar
  31. 31.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27, 2907–2915 (2006)CrossRefGoogle Scholar
  32. 32.
    Bertolla, L., Dlouhý, I., Boccaccini, A.R.: Preparation and characterization of Bioglass®-based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. J. Eur. Ceram. Soc. 34, 3379–3387 (2014)CrossRefGoogle Scholar
  33. 33.
    Fabbri, P., Valentini, L., Hum, J., Detsch, R., Boccaccini, A.R.: 45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene. Mater. Sci. Eng., C 33, 3592–3600 (2013)CrossRefGoogle Scholar
  34. 34.
    Eqtesadi, S., Motealleh, A., Miranda, P., Pajares, A., Lemos, A., Ferreira, J.M.F.: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 34, 107–118 (2014)CrossRefGoogle Scholar
  35. 35.
    Farag, M.M., Rüssel, C.: Glass-ceramic scaffolds derived from Bioglass® and glass with low crystallization affinity for bone regeneration. Mater. Lett. 73, 161–165 (2012)CrossRefGoogle Scholar
  36. 36.
    Francis, L., Meng, D., Knowles, J.C., Roy, I., Boccaccini, A.R.: Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering. Acta Biomater. 6, 2773–2786 (2010)CrossRefGoogle Scholar
  37. 37.
    Gerhardt, L.-C., Widdows, K.L., Erol, M.M., Burch, C.W., Sanz-Herrera, J.A., Ochoa, I., Stampfli, R., Roqan, I.S., Gabe, S., Ansari, T., Boccaccini, A.R.: The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32, 4096–4108 (2011)CrossRefGoogle Scholar
  38. 38.
    Kent Leach, J., Kaigler, D., Wang, Z., Krebsbach, P.H., Mooney, D.J.: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27, 3249–3255 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Inamori School of EngineeringAlfred UniversityAlfredUSA

Personalised recommendations