Skip to main content

The Evolution, Control, and Effects of the Compositions of Bioactive Glasses on Their Properties and Applications

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

Bioactive glasses have been extensively studied for several applications, and understanding their structures is very important for the design of alternative materials and comprehension of the behaviors of these materials. The dissolution products of bioactive glasses are critical for their performance and application and heavily depend on the bioactive glass network. The incorporation of physiologically active ions into their structures and the controlled ion release can lead to therapeutic benefits, such as cell differentiation, antibacterial action, and anti-inflammatory effects, improving the properties of the bioactive glasses. This chapter covers literature reports that have investigated the physicochemical and biological properties of bioactive glasses based on their structures. In particular, recent advances in the understanding of the effects of bioactive glasses with different compositions, which are fabricated via the incorporation of several different ions, on their biological properties and applications are summarized and discussed. This chapter provides an overview of new tissue engineering approaches based on therapeutic ion release, which aids in understanding how the chemical composition can be tailored according to each application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hench, L.L.: Chronology of bioactive glass development and clinical applications, pp. 67–73. (2013). doi:10.4236/njgc.2013.32011

    Google Scholar 

  2. Hench, L.L., Hench, J.W., Greenspan, D.C.: Bioglass(R): a short history and bibliography. Mater. Sci. 40, 1–42 (2004)

    Article  Google Scholar 

  3. Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006). doi:10.1007/s10856-006-0432-z

    Article  Google Scholar 

  4. Jones, J.R.: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). doi:10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  5. Gerhardt, L.-C., Boccaccini, A.R.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel) 3, 3867–3910 (2010). doi:10.3390/ma3073867

    Article  Google Scholar 

  6. Brauer DS. bioactive glasses-structure and properties. Angew Chemie Int. Ed. (2015). doi:10.1002/anie.201405310

    Google Scholar 

  7. Wallace, K.E., Hill, R.G., Pembroke, J.T., Brown, C.J., Hatton, P.V.: Influence of sodium oxide content on bioactive glass properties. J. Mater. Sci. Mater. Med. 10, 697–701 (1999). doi:10.1023/A:1008910718446

    Article  Google Scholar 

  8. Gupta, R., Kumar, A.: Bioactive materials for biomedical applications using sol–gel technology. Biomed. Mater. 3, 034005 (2008). doi:10.1088/1748-6041/3/3/034005

    Article  Google Scholar 

  9. Pereira, M.M., Clark, A.E., Hench, L.L.: Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J. Biomed. Mater. Res. 28, 693–698 (1994)

    Article  Google Scholar 

  10. Pereira, M.M., Hench, L.L.: Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J. Sol–Gel. Sci. Technol. 7, 59–68 (1996). doi:10.1007/BF00401884

    Article  Google Scholar 

  11. Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on Properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015). doi:10.1016/j.ceramint.2015.02.140

    Article  Google Scholar 

  12. Kokubo, T.: Bioactive glass ceramics: properties and applications. Biomaterials 12, 155–163 (1991). doi:10.1016/0142-9612(91)90194-F

    Article  Google Scholar 

  13. Zhong, J., Greenspan, D.C.: Processing and properties of sol–gel bioactive glasses. J. Biomed. Mater. Res. 53, 694–701 (2000). doi:10.1002/1097-4636(2000)53:6<694:AID-JBM12>3.0.CO;2-6

    Article  Google Scholar 

  14. Lei, B., Chen, X., Han, X., Zhou, J.: Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. J. Mater. Chem. 22, 16906 (2012). doi:10.1039/c2jm31384g

    Article  Google Scholar 

  15. Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Rebelo, A.H.S., Ferreira, J.M.F.: Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 3, 255–262 (2007). doi:10.1016/j.actbio.2006.09.005

    Article  Google Scholar 

  16. Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., et al.: A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst Preparation of Powder Gel. Mater. Sci. Eng., C 47, 407–412 (2015). doi:10.1016/j.msec.2014.11.045

    Article  Google Scholar 

  17. De Oliveira, A.A.R., Gomide, V.S., Leite, M.D.F., Mansur, H.S., Pereira, M.D.M.: Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol–gel derived hybrid foams. Mater. Res. 12, 239–244 (2009). doi:10.1590/S1516-14392009000200021

    Google Scholar 

  18. Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 102, 254–274 (2014). doi:10.1002/jbm.a.34690

    Article  Google Scholar 

  19. Hanson, E.T., Lewis, R.L., Auerbach, R., Thomson, J.A., Applica, B.: Third-generation biomedical materials, p. 295 (2002)

    Google Scholar 

  20. Siqueira, R.L., Zanotto, E.D.: The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 24, 365–379 (2013). doi:10.1007/s10856-012-4797-x

    Article  Google Scholar 

  21. Sepulveda, P., Jones, J.R., Hench, L.: Characterization of melt-derived 45S5 and sol–gel–derived 58S bioactive glasses. J. Biomed. Mater. Res. 58, 734–740 (2001). doi:10.1002/jbm.10026

    Article  Google Scholar 

  22. De Barros Coelho, M., Magalhães Pereira, M.: Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J. Biomed. Mater. Res. B Appl. Biomater. 75, 451–456 (2005). doi:10.1002/jbm.b.30354

    Google Scholar 

  23. Pereira, M.M., Clark, A.E., Hench, L.L.: Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J. Am. Ceram. Soc. 78, 2463–2468 (1995)

    Article  Google Scholar 

  24. Valerio, P., Guimaráes, M.H.R., Pereira, M.M., Leite, M.F., Goes, A.M.: Primary osteoblast cell response to sol–gel derived bioactive glass foams. J. Mater. Sci. Mater. Med. 16, 851–856 (2005). doi:10.1007/s10856-005-3582-5

    Article  Google Scholar 

  25. Lin, S., Ionescu, C., Pike, K.J., Smith, M.E., Jones, J.R.: Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass, pp. 1276–1282 (2009). doi:10.1039/b814292k

    Google Scholar 

  26. FitzGerald, V., Pickup, D.M., Greenspan, D., Sarkar, G., Fitzgerald, J.J., Wetherall, K.M., et al.: A neutron and X-ray diffraction study of bioglass® with reverse Monte Carlo modelling. Adv. Funct. Mater. 17, 3746–3753 (2007). doi:10.1002/adfm.200700433

    Article  Google Scholar 

  27. Jugdaohsingh, R., Tucker, K.L., Qiao, N., Cupples, L.A., Kiel, D.P., Powell, J.J.: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J. Bone Miner. Res. 19, 297–307 (2004). doi:10.1359/JBMR.0301225

    Article  Google Scholar 

  28. Reffitt, D.M., Ogston, N., Jugdaohsingh, R., Cheung, H.F.J., Evans, B.A.J., Thompson, R.P.H., et al.: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127–135 (2003). doi:10.1016/S8756-3282(02)00950-X

    Article  Google Scholar 

  29. Sopcak, T., Medvecky, L., Girman, V., Durisin, J.: Mechanism of precipitation and phase composition of CaO–SiO2–P2O5 systems synthesized by sol–gel method. J. Non Cryst. Solids 415, 16–23 (2015). doi:10.1016/j.jnoncrysol.2015.02.014

    Article  Google Scholar 

  30. Vallet-Regí, M., Salinas, A.J., Román, J., Gil, M.: Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J. Mater. Chem. 9, 515–518 (1999). doi:10.1039/a808679f

    Article  Google Scholar 

  31. Farooq, I., Tylkowski, M., Müller, S., Janicki, T., Brauer, D.S., Hill, R.G.: Influence of sodium content on the properties of bioactive glasses for use in air abrasion. Biomed. Mater. 8, 065008 (2013). doi:10.1088/1748-6041/8/6/065008

    Article  Google Scholar 

  32. Salih, V., Patel, A., Knowles, J.C.: Zinc-containing phosphate-based glasses for tissue engineering. Biomed. Mater. 2, 11–20 (2007). doi:10.1088/1748-6041/2/1/003

    Article  Google Scholar 

  33. Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., Chrzanowski, W., O’Dell, L.A., et al.: Antimicrobial gallium-doped phosphate-based glasses. Adv. Funct. Mater. 18, 732–741 (2008). doi:10.1002/adfm.200700931

    Article  Google Scholar 

  34. Saranti, A., Koutselas, I., Karakassides, M.A.: Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J. Non Cryst. Solids 352, 390–398 (2006). doi:10.1016/j.jnoncrysol.2006.01.042

    Article  Google Scholar 

  35. Hoppe, A., Jokic, B., Janackovic, D., Fey, T., Greil, P., Romeis, S., et al.: Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl. Mater. Interfaces 6, 2865–2877 (2014). doi:10.1021/am405354y

    Article  Google Scholar 

  36. Mercier, C., Follet-Houttemane, C., Pardini, A., Revel, B.: Influence of P2O5 content on the structure of SiO2–Na2O–CaO–P2O5 bioglasses by 29Si and 31P MAS-NMR. J. Non Cryst. Solids 357, 3901–3909 (2011). doi:10.1016/j.jnoncrysol.2011.07.042

    Article  Google Scholar 

  37. Lebecq, I., Désanglois, F., Leriche, A., Follet-Houttemane, C.: Compositional dependence on thein vitro bioactivity of invert or conventional bioglasses in the Si–Ca–Na–P system. J. Biomed. Mater. Res., Part A 83A, 156–168 (2007). doi:10.1002/jbm.a.31228

    Article  Google Scholar 

  38. Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005). doi:10.1016/j.jnoncrysol.2004.07.067

    Article  Google Scholar 

  39. Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007). doi:10.1021/jp075677o

    Article  Google Scholar 

  40. Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013). doi:10.1021/jp312263j

    Article  Google Scholar 

  41. Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid–state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010). doi:10.1021/cm102089c

    Article  Google Scholar 

  42. Padilla, S., Román, J., Carenas, A., Vallet-Regí, M.: The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials 26, 475–483 (2005). doi:10.1016/j.biomaterials.2004.02.054

    Article  Google Scholar 

  43. Chen, X., Liao, X., Huang, Z., You, P., Chen, C., Kang, Y., et al.: Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO–MgO–SiO2 system. J. Biomed. Mater. Res. B Appl. Biomater. 93, 194–202 (2010). doi:10.1002/jbm.b.31574

    Google Scholar 

  44. Ryu, H.-S., Lee, J.-K., Seo, J.-H., Kim, H., Hong, K.S., Kim, D.J., et al.: Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO–SiO2–B2O3 system. J. Biomed. Mater. Res. A 68, 79–89 (2004). doi:10.1002/jbm.a.20029

    Article  Google Scholar 

  45. Yang, X., Zhang, L., Chen, X., Sun, X., Yang, G., Guo, X., et al.: Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J. Non Cryst. Solids 358, 1171–1179 (2012). doi:10.1016/j.jnoncrysol.2012.02.005

    Article  Google Scholar 

  46. Fu, Q., Rahaman, M.N., Fu, H., Liu, X.: Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. A 95, 164–171 (2010). doi:10.1002/jbm.a.32824

    Article  Google Scholar 

  47. Liu, X., Huang, W., Fu, H., Yao, A., Wang, D., Pan, H., et al.: Bioactive borosilicate glass scaffolds: Improvement on the strength of glass-based scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 20, 365–372 (2009). doi:10.1007/s10856-008-3582-3

    Article  Google Scholar 

  48. Gu, Y., Wang, G., Zhang, X., Zhang, Y., Zhang, C., Liu, X., et al.: Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Mater. Sci. Eng., C 36, 294–300 (2014). doi:10.1016/j.msec.2013.12.023

    Article  Google Scholar 

  49. Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A.: Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31, 594–605 (2013). doi:10.1016/j.tibtech.2013.06.005

    Article  Google Scholar 

  50. Wu, C., Miron, R., Sculean, A., Kaskel, S., Doert, T., Schulze, R., et al.: Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32, 7068–7078 (2011). doi:10.1016/j.biomaterials.2011.06.009

    Article  Google Scholar 

  51. Dzondo-Gadet, M., Mayap-Nzietchueng, R., Hess, K., Nabet, P., Belleville, F., Dousset, B.: Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol. Trace Elem. Res. 85, 23–33 (2002). doi:10.1385/BTER:85:1:23

    Article  Google Scholar 

  52. Lee, J.H., Nam, H., Ryu, H.S., Seo, J.H., Chang, B.S., Lee, C.K.: Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone. J. Orthop. Sci. 16, 291–297 (2011). doi:10.1007/s00776-011-0047-1

    Article  Google Scholar 

  53. Maheswaran, A., Hirankumar, G., Heller, N., Karthickprabhu, S., Kawamura, J.: Structure, dielectric and bioactivity of P2O5–CaO–Na2O–B2O3 bioactive glass. Appl. Phys. A 117, 1323–1327 (2014). doi:10.1007/s00339-014-8545-6

    Article  Google Scholar 

  54. Ali, S., Farooq, I., Iqbal, K.: A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent J 26, 1–5 (2014). doi:10.1016/j.sdentj.2013.12.001

    Article  Google Scholar 

  55. Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review, p. 20 (2010). doi:10.1039/c0jm01081b

    Google Scholar 

  56. Fu, Q., Saiz, E., Rahaman, M.N., Tomsia, A.P.: Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. C 31, 1245–1256 (2011). doi:10.1016/j.msec.2011.04.022

    Article  Google Scholar 

  57. Farooq, I., Imran, Z., Farooq, U., Leghari, A., Ali, H.: Bioactive glass: a material for the future. World J. Dent. 3, 199–201 (2012). doi:10.5005/jp-journals-10015-1156

    Article  Google Scholar 

  58. De Oliveira, A.A.R., De Souza, D.A., Dias, L.L.S., De Carvalho, S.M., Mansur, H.S., Magalhães Pereira, M.: Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed. Mater. 8, 025011 (2013). doi:10.1088/1748-6041/8/2/025011

    Article  Google Scholar 

  59. El-Fiqi, A., Kim, T.-H., Kim, M., Eltohamy, M., Won, J.-E., Lee, E.-J., et al.: Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale (2012). doi:10.1039/c2nr31775c

    Google Scholar 

  60. Shruti, S., Salinas, A.J., Ferrari, E., Malavasi, G., Lusvardi, G., Doadrio, A.L., et al.: Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater. 180, 92–101 (2013). doi:10.1016/j.micromeso.2013.06.014

    Article  Google Scholar 

  61. Wu, C., Fan, W., Gelinsky, M., Xiao, Y., Simon, P., Schulze, R., et al.: Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties. Acta Biomater. 7, 1797–1806 (2011). doi:10.1016/j.actbio.2010.12.018

    Article  Google Scholar 

  62. Jones, J.R.: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). doi:10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  63. Lopes, J.H., Mazali, I.O., Landers, R., Bertran, C.A.: Structural investigation of the surface of bioglass 45S5 enriched with calcium ions. J. Am. Ceram. Soc. 96, 1464–1469 (2013). doi:10.1111/jace.12305

    Article  Google Scholar 

  64. Hench, L.L.: Feature 1705. Stress Int. J. Biol. Stress 28, 1705–1728 (1998)

    Google Scholar 

  65. Murphy, S., Boyd, D., Moane, S., Bennett, M.: The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J. Mater. Sci. Mater. Med. 20, 2207–2214 (2009). doi:10.1007/s10856-009-3789-y

    Article  Google Scholar 

  66. Christodoulou, I., Buttery, L.D.K., Saravanapavan, P., Tai, G., Hench, L.L., Polak, J.M.: Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J. Biomed. Mater. Res. B Appl. Biomater. 74, 529–537 (2005). doi:10.1002/jbm.b.30249

    Article  Google Scholar 

  67. Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67, 321–329 (2000). doi:10.1007/s002230001134

    Article  Google Scholar 

  68. Valerio, P., Pereira, M.M., Goes, A.M., Leite, M.F.: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25, 2941–2948 (2004). doi:10.1016/j.biomaterials.2003.09.086

    Article  Google Scholar 

  69. Mourino, V., Cattalini, J.P., Boccaccini, A.R.: Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface 9, 401–419 (2012). doi:10.1098/rsif.2011.0611

    Article  Google Scholar 

  70. Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011). doi:10.1016/j.biomaterials.2011.01.004

    Article  Google Scholar 

  71. Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., et al.: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 4847–4855 (2005). doi:10.1016/j.biomaterials.2005.01.006

    Article  Google Scholar 

  72. Gentleman, E., Fredholm, Y.C., Jell, G., Lotfibakhshaiesh, N., O’Donnell, M.D., Hill, R.G., et al.: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31, 3949–3956 (2010). doi:10.1016/j.biomaterials.2010.01.121

    Article  Google Scholar 

  73. Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., et al.: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175–184 (2002). doi:10.1002/jbm.10270

    Article  Google Scholar 

  74. Diba, M., Tapia, F., Boccaccini, A.R., Strobel, L.A.: Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glas. Sci. 3, 221–253 (2012). doi:10.1111/j.2041-1294.2012.00095.x

    Article  Google Scholar 

  75. Wu, C., Zhou, Y., Fan, W., Han, P., Chang, J., Yuen, J., et al.: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33, 2076–2085 (2012). doi:10.1016/j.biomaterials.2011.11.042

    Article  Google Scholar 

  76. Gérard, C., Bordeleau, L.J., Barralet, J., Doillon, C.J.: The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31, 824–831 (2010). doi:10.1016/j.biomaterials.2009.10.009

    Article  Google Scholar 

  77. Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., et al.: An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent. Mater. 4, 1343–1351 (2008). doi:10.1016/j.dental.2008.02.015

    Article  Google Scholar 

  78. Shruti, S., Salinas, A.J., Malavasi, G., Lusvardi, G., Menabue, L., Ferrara, C., et al.: Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J. Mater. Chem. 22, 13698 (2012). doi:10.1039/c2jm31767b

    Article  Google Scholar 

  79. Marie, P.J.: The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46, 571–576 (2010). doi:10.1016/j.bone.2009.07.082

    Article  Google Scholar 

  80. Zhou, H., Wei, J., Wu, X., Shi, J., Liu, C., Jia, J., et al.: The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro. J. Mater. Sci. Mater. Med. 21, 2175–2185 (2010). doi:10.1007/s10856-010-4083-8

    Article  Google Scholar 

  81. Li, H.C., Wang, D.G., Hu, J.H., Chen, C.Z.: Influence of fluoride additions on biological and mechanical properties of Na2O–CaO–SiO2–P2O5 glass-ceramics. Mater. Sci. Eng. C 35, 171–178 (2014). doi:10.1016/j.msec.2013.10.028

    Article  Google Scholar 

  82. Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009). doi:10.1016/j.actbio.2009.06.009

    Article  Google Scholar 

  83. Brauer, D.S., Anjum, M.N., Mneimne, M., Wilson, R.M., Doweidar, H., Hill, R.G.: Fluoride-containing bioactive glass-ceramics. J. Non Cryst. Solids 358, 1438–1442 (2012). doi:10.1016/j.jnoncrysol.2012.03.014

    Article  Google Scholar 

  84. Coulombe, J., Faure, H., Robin, B., Ruat, M.: In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys. Res. Commun. 323, 1184–1190 (2004). doi:10.1016/j.bbrc.2004.08.209

    Article  Google Scholar 

  85. Saidak, Z., Marie, P.J.: Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol. Ther. 136, 216–226 (2012). doi:10.1016/j.pharmthera.2012.07.009

    Article  Google Scholar 

  86. Wei, L., Ke, J., Prasadam, I., Miron, R.J., Lin, S., Xiao, Y., et al.: A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos. Int. 25, 2089–2096 (2014). doi:10.1007/s00198-014-2735-0

    Article  Google Scholar 

  87. Vasile, E., Popescu, L.M., Piticescu, R.M., Burlacu, A., Buruiana, T.: Physico-chemical and biocompatible properties of hydroxyapatite based composites prepared by an innovative synthesis route. Mater. Lett. 79, 85–88 (2012). doi:10.1016/j.matlet.2012.03.099

    Article  Google Scholar 

  88. Yamaguchi, M.: Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 338, 241–254 (2010). doi:10.1007/s11010-009-0358-0

    Article  Google Scholar 

  89. Kwun, I.S., Cho, Y.E., Lomeda, R.A.R., Shin, H.I., Choi, J.Y., Kang, Y.H., et al.: Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 46, 732–741 (2010). doi:10.1016/j.bone.2009.11.003

    Article  Google Scholar 

  90. Hatakeyama, D., Kozawa, O., Otsuka, T., Shibata, T., Uematsu, T.: Zinc suppresses IL-6 synthesis by prostaglandin F2α in osteoblasts: inhibition of phospholipase C and phospholipase D. J. Cell. Biochem. 85, 621–628 (2002). doi:10.1002/jcb.10166

    Article  Google Scholar 

  91. Castiglioni, S., Cazzaniga, A., Albisetti, W., Maier, J.A.M.: Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 5, 3022–3033 (2013). doi:10.3390/nu5083022

    Article  Google Scholar 

  92. Jahnen-Dechent, W., Ketteler, M.: Magnesium basics. CKJ Clin. Kidney J. (2012). doi:10.1093/ndtplus/sfr163

    Google Scholar 

  93. Torres, P.M.C., Vieira, S.I., Cerqueira, A.R., Pina, S., Da Cruz Silva, O.A.B., Abrantes, J.C.C., et al.: Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136, 57–66 (2014). doi:10.1016/j.jinorgbio.2014.03.013

    Article  Google Scholar 

  94. Rico, H., Gómez-Raso, N., Revilla, M., Hernández, E.R., Seco, C., Páez, E., et al.: Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats a morphometric and densitometric study. Eur. J. Obstet. Gynecol. Reprod. Biol. 90, 97–101 (2000). doi:10.1016/S0301-2115(99)00223-7

    Article  Google Scholar 

  95. Landete-Castillejos, T., Currey, J.D., Ceacero, F., García, A.J., Gallego, L., Gomez, S.: Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 50, 245–254 (2012). doi:10.1016/j.bone.2011.10.026

    Article  Google Scholar 

  96. Tanaka, T., Kojima, I., Ohse, T., Ingelfinger, J.R., Adler, S., Fujita, T., et al.: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005). doi:10.1038/labinvest.3700328

    Article  Google Scholar 

  97. Azevedo, M., Jell, G., O’Donnell, M., Law, R., Hill, R., Stevens, M.: Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J. Mater. Chem. (2010). doi:10.1039/c0jm01111h

    Google Scholar 

  98. Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S.R., et al.: The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626 (2007). doi:10.1172/JCI31581

    Article  Google Scholar 

  99. Ye, J., He, J., Wang, C., Yao, K., Gou, Z.: Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol. Lett. 36, 961–968 (2014). doi:10.1007/s10529-014-1465-x

    Article  Google Scholar 

  100. Goh, Y.F., Alshemary, A.Z., Akram, M., Abdul Kadir, M.R., Hussain, R.: Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int. J. Appl. Glas. Sci. 266, 255–266 (2014). doi:10.1111/ijag.12061

    Article  Google Scholar 

  101. Bejarano, J., Caviedes, P., Palza, H.: Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater. 10, 025001 (2015). doi:10.1088/1748-6041/10/2/025001

    Article  Google Scholar 

  102. Hoppe, A., Meszaros, R., Stähli, C., Romeis, S., Schmidt, J., Peukert, W., et al.: In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J. Mater. Chem. B 1, 5659 (2013). doi:10.1039/c3tb21007c

    Article  Google Scholar 

  103. Finney, L., Vogt, S., Fukai, T., Glesne, D.: Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 36, 88–94 (2009). doi:10.1111/j.1440-1681.2008.04969.x

    Article  Google Scholar 

  104. Newby, P.J., El-Gendy, R., Kirkham, J., Yang, X.B., Thompson, I.D., Boccaccini, A.R.: Ag-doped 45S5 Bioglass̄-based bone scaffolds by molten salt ion exchange: Processing and characterisation. J. Mater. Sci. Mater. Med. 22, 557–569 (2011). doi:10.1007/s10856-011-4240-8

    Article  Google Scholar 

  105. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S.: Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008). doi:10.1016/j.actbio.2007.11.006

    Article  Google Scholar 

  106. Deliormanlı, A.M.: Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. (2015). doi:10.1007/s10856-014-5368-0

    Google Scholar 

  107. Mouriño, V., Newby, P., Boccaccini, A.R.: Preparation and characterization of gallium releasing 3-d alginate coated 45s5 bioglass® based scaffolds for bone tissue engineering. Adv. Eng. Mater. 12, 283–291 (2010). doi:10.1002/adem.200980078

    Article  Google Scholar 

  108. Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009). doi:10.1016/j.actbio.2008.09.019

    Article  Google Scholar 

  109. Schubert, D., Dargusch, R., Raitano, J., Chan, S.W.: Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 342, 86–91 (2006). doi:10.1016/j.bbrc.2006.01.129

    Article  Google Scholar 

  110. Horie, M., Nishio, K., Kato, H., Fujita, K., Endoh, S., Nakamura, A., et al.: Cellular responses induced by cerium oxide nanoparticles: Induction of intracellular calcium level and oxidative stress on culture cells. J. Biochem. 150, 461–471 (2011). doi:10.1093/jb/mvr081

    Article  Google Scholar 

  111. Hu, Y., Du, Y., Jiang, H., Jiang, G.: Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via Smad1/ 5/ 8 signaling pathway. Int. J. Clin. Exp. Pathol. 7, 5369–5378 (2014)

    Google Scholar 

  112. Lin, W., Huang, Y.-W., Zhou, X.-D., Ma, Y.: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 25, 451–457 (2015). doi:10.1080/10915810600959543

    Article  Google Scholar 

  113. Karakoti, A.S., Tsigkou, O., Yue, S., Lee, P.D., Stevens, M.M., Jones, J.R., et al.: Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20, 8912 (2010). doi:10.1039/c0jm01072c

    Article  Google Scholar 

  114. Julien, M., Khoshniat, S., Lacreusette, A., Gatius, M., Bozec, A., Wagner, E.F., et al.: Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J. Bone Miner. Res. 24, 1856–1868 (2009). doi:10.1359/jbmr.090508

    Article  Google Scholar 

  115. Saravanapavan, P., Jones, J.R., Pryce, R.S., Hench, L.L.: Bioactivity of gel-glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2O5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O). J Biomed Mater Res A 66, 110–119 (2003). doi:10.1002/jbm.a.10532

    Article  Google Scholar 

  116. Bolsover, S.R.: Calcium signalling in growth cone migration. Cell Calcium 37, 395–402 (2005). doi:10.1016/j.ceca.2005.01.007

    Article  Google Scholar 

  117. Yu, B., Poologasundarampillai, G., Turdean-Ionescu, C., Smith, M.E., Jones, J.R.: A new calcium source for bioactive sol–gel hybrids. Bioceram. Dev. Appl. 1, 1–3 (2011). doi:10.4303/bda/D110178

    Article  Google Scholar 

  118. Yu, B., Turdean-Ionescu, C.A., Martin, R.A., Newport, R.J., Hanna, J.V., Smith, M.E., et al.: Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28, 17465–17476 (2012). doi:10.1021/la303768b

    Article  Google Scholar 

  119. Newport, R.J., Skipper, L.J., Carta, D., Pickup, D.M., Sowrey, F.E., Smith, M.E., et al.: The use of advanced diffraction methods in the study of the structure of a bioactive calcia: Silica sol–gel glass. J. Mater. Sci. Mater. Med. 17, 1003–1010 (2006). doi:10.1007/s10856-006-0436-8

    Article  Google Scholar 

  120. Pereira, M.M., Clark, A.E., Hench, L.L.: Homogeneity of bioactive sol–gel-derived glasses in the system CaO–P2O5–SiO2.pdf. J. Mater. Synth. Process. 2, 189–195 (1994)

    Google Scholar 

  121. Li, A., Shen, H., Ren, H., Wang, C., Wu, D., Martin, R.A., et al.: Bioactive organic/inorganic hybrids with improved mechanical performance. J. Mater. Chem. B 3, 1379–1390 (2015). doi:10.1039/C4TB01776E

    Article  Google Scholar 

  122. Shah, F.A., Brauer, D.S., Hill, R.G., Hing, K.A.: Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Mater. Lett. 153, 143–147 (2015). doi:10.1016/j.matlet.2015.04.013

    Article  Google Scholar 

  123. Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J. Non Cryst. Solids 356, 2546–2551 (2010). doi:10.1016/j.jnoncrysol.2010.06.078

    Article  Google Scholar 

  124. Goel, A., Rajagopal, R.R., Ferreira, J.M.F.: Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2-P2O5-CaF2 glasses. Acta Biomater. 7, 4071–4080 (2011). doi:10.1016/j.actbio.2011.06.047

    Article  Google Scholar 

  125. Isaac, J., Nohra, J., Lao, J., Jallot, E., Nedelec, J.M., Berdal, A., et al.: Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 21, 130–143 (2011)

    Google Scholar 

  126. O’Donnell, M.D., Hill, R.G.: Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 6, 2382–2385 (2010). doi:10.1016/j.actbio.2010.01.006

    Article  Google Scholar 

  127. Zhang, W., Shen, Y., Pan, H., Lin, K., Liu, X., Darvell, B.W., et al.: Effects of strontium in modified biomaterials. Acta Biomater. 7, 800–808 (2011). doi:10.1016/j.actbio.2010.08.031

    Article  Google Scholar 

  128. Aina, V., Malavasi, G., Fiorio Pla, A., Munaron, L., Morterra, C.: Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomater. 5, 1211–1222 (2009). doi:10.1016/j.actbio.2008.10.020

    Article  Google Scholar 

  129. Zhang, X.F., Kehoe, S., Adhi, S.K., Ajithkumar, T.G., Moane, S., O’Shea, H., et al.: Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: potential components for nerve guidance conduits. Mater. Sci. Eng., C 31, 669–676 (2011). doi:10.1016/j.msec.2010.12.016

    Article  Google Scholar 

  130. Anand, V., Singh, K.J., Kaur, K.: Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer. J. Non Cryst. Solids 406, 88–94 (2014). doi:10.1016/j.jnoncrysol.2014.09.050

    Article  Google Scholar 

  131. Oki, A., Parveen, B., Hossain, S., Adeniji, S., Donahue, H.: Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J. Biomed. Mater. Res. A 69, 216–221 (2004). doi:10.1002/jbm.a.20070

    Article  Google Scholar 

  132. Haimi, S., Gorianc, G., Moimas, L., Lindroos, B., Huhtala, H., Räty, S., et al.: Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 5, 3122–3131 (2009). doi:10.1016/j.actbio.2009.04.006

    Article  Google Scholar 

  133. Rude, R.K., Gruber, H.E., Wei, L.Y., Frausto, A., Mills, B.G.: Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif. Tissue Int. 72, 32–41 (2003). doi:10.1007/s00223-001-1091-1

    Article  Google Scholar 

  134. Maier, J.A.M., Bernardini, D., Rayssiguier, Y., Mazur, A.: High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta Mol. Basis Dis. 1689, 6–12 (2004). doi:10.1016/j.bbadis.2004.02.004

    Article  Google Scholar 

  135. Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami, M.: In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J. Biomed. Mater. Res. A 88, 1087–1096 (2009). doi:10.1002/jbm.a.31901

    Article  Google Scholar 

  136. Jallot, E.: Role of magnesium during spontaneous formation of a calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO. Appl. Surf. Sci. 211, 89–95 (2003). doi:10.1016/S0169-4332(03)00179-X

    Article  Google Scholar 

  137. Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M.: Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater. Sci. Eng. C 29, 335–340 (2009). doi:10.1016/j.msec.2008.07.004

    Article  Google Scholar 

  138. Imani Fooladi, A.A., Hosseini, H.M., Hafezi, F., Hosseinnejad, F., Nourani, M.R.: Sol–gel-derived bioactive glass containing SiO2–MgO–CaO–P2O5 as an antibacterial scaffold. J. Biomed. Mater. Res. A 101A, 1582–1587 (2013). doi:10.1002/jbm.a.34464

    Article  Google Scholar 

  139. Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Sandri, M., Sprio, S.: Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J. Mater. Sci. Mater. Med. 19, 239–247 (2008). doi:10.1007/s10856-006-0032-y

    Article  Google Scholar 

  140. Miola, M., Brovarone, C.V., Maina, G., Rossi, F., Bergandi, L., Ghigo, D., et al.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater. Sci. Eng., C 38, 107–118 (2014). doi:10.1016/j.msec.2014.01.045

    Article  Google Scholar 

  141. Bae, Y.J., Kim, M.H.: Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol. Trace Elem. Res. 124, 28–34 (2008). doi:10.1007/s12011-008-8119-6

    Article  Google Scholar 

  142. Culotta, V.C., Yang, M., Hall, M.D.: Manganese transport and trafficking: lessons learned from. Society 4, 1159–1165 (2005). doi:10.1128/EC.4.7.1159

    Google Scholar 

  143. Lüthen, F., Bulnheim, U., Müller, P.D., Rychly, J., Jesswein, H., Nebe, J.G.B.: Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol. Eng. 24, 531–536 (2007). doi:10.1016/j.bioeng.2007.08.003

    Article  Google Scholar 

  144. Sopyan, I., Ramesh, S., Nawawi, N.A., Tampieri, A., Sprio, S.: Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram. Int. 37, 3703–3715 (2011). doi:10.1016/j.ceramint.2011.06.033

    Article  Google Scholar 

  145. Beattie, J.H., Avenell, A.: Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5, 167–188 (1992). doi:10.1079/NRR19920013

    Article  Google Scholar 

  146. Landete-Castillejos, T., Currey, J.D., Estevez, J.A., Fierro, Y., Calatayud, A., Ceacero, F., et al.: Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47, 815–825 (2010). doi:10.1016/j.bone.2010.07.021

    Article  Google Scholar 

  147. Pabbruwe, M.B., Standard, O.C., Sorrell, C.C., Howlett, C.R.: Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants. Biomaterials 25, 4901–4910 (2004). doi:10.1016/j.biomaterials.2004.01.005

    Article  Google Scholar 

  148. Bracci, B., Torricelli, P., Panzavolta, S., Boanini, E., Giardino, R., Bigi, A.: Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J. Inorg. Biochem. 103, 1666–1674 (2009). doi:10.1016/j.jinorgbio.2009.09.009

    Article  Google Scholar 

  149. Simonsen, L.O., Harbak, H., Bennekou, P.: Cobalt metabolism and toxicology-A brief update. Sci. Total Environ. 432, 210–215 (2012). doi:10.1016/j.scitotenv.2012.06.009

    Article  Google Scholar 

  150. Quinlan, E., Partap, S., Azevedo, M.M., Jell, G., Stevens, M.M., O’Brien, F.J.: Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials 52, 358–366 (2015). doi:10.1016/j.biomaterials.2015.02.006

    Article  Google Scholar 

  151. Peters, K., Schmidt, H., Unger, R.E., Kamp, G., Pröls, F., Berger, B.J., et al.: Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol. Cell. Biochem. 270, 157–166 (2005). doi:10.1007/s11010-005-4504-z

    Article  Google Scholar 

  152. Buttyan, R., Chichester, P., Stisser, B., Matsumoto, S., Ghafar, M.A., Levin, R.M.: Acute intravesical infusion of a cobalt solution stimulates a hypoxia response, growth and angiogenesis in the rat bladder. J. Urol. 169, 2402–2406 (2003). doi:10.1097/01.ju.0000058406.16931.93

    Article  Google Scholar 

  153. Kramer, E., Itzkowitz, E., Wei, M.: Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram. Int. 40, 13471–13480 (2014). doi:10.1016/j.ceramint.2014.05.072

    Article  Google Scholar 

  154. Srivastava, A.K., Pyare, R.: Characterization of CuO substituted 45S5 bioactive glasses and glass—ceramics. Int. J. Sci. Technol. Res. 1, 28–41 (2012)

    Google Scholar 

  155. Pratten, J., Nazhat, S.N., Blaker, J.J., Boccaccini, A.R.: In vitro attachment of Staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J. Biomater. Appl. 19, 47–57 (2004). doi:10.1177/0885328204043200

    Article  Google Scholar 

  156. Hu, G., Xiao, L., Tong, P., Bi, D., Wang, H., Ma, H., et al.: Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int. J. Nanomed. 7, 2613–2620 (2012). doi:10.2147/IJN.S31081

    Article  Google Scholar 

  157. Simon, V.: Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. J. Mater. Chem. (2014). doi:10.1039/C4TB00733F

    Google Scholar 

  158. Pickup, D.M., Moss, R.M., Qiu, D., Newport, R.J., Valappil, S.P., Knowles, J.C., et al.: Structural characterization by X-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. J. Chem. Phys. (2009). doi:10.1063/1.3076057

    Google Scholar 

  159. Salinas, A.J., Shruti, S., Malavasi, G., Menabue, L., Vallet-Regí, M.: Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 7, 3452–3458 (2011). doi:10.1016/j.actbio.2011.05.033

    Article  Google Scholar 

  160. Zhang, J., Zhu, Y.: Synthesis and characterization of CeO2-incorporated mesoporous calcium-silicate materials. Microporous Mesoporous Mater. 197, 244–251 (2014). doi:10.1016/j.micromeso.2014.06.018

    Article  Google Scholar 

  161. Das, S., Dowding, J.M., Klump, K.E., McGinnis, J.F., Self, W., Seal, S.: Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8, 1483–1508 (2013). doi:10.2217/nnm.13.133

    Article  Google Scholar 

  162. Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003). doi:10.1016/S0022-3093(02)01628-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from CNPq, CAPES, and FAPEMIG/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marivalda de Magalhães Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barrioni, B.R., de Oliveira, A.A.R., Pereira, M.d. (2016). The Evolution, Control, and Effects of the Compositions of Bioactive Glasses on Their Properties and Applications. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_4

Download citation

Publish with us

Policies and ethics