An Introduction and History of the Bioactive Glasses

  • Gurbinder KaurEmail author
  • Steven Grant Waldrop
  • Vishal Kumar
  • Om Prakash Pandey
  • Nammalwar Sriranganathan
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)


When the hierarchy turns towards higher level, the molecular events become more complex and convoluted. The human embryo development is quite complex as it originates from a 32-celled stage and metamorphoses by a series of metabolic and physical processes. The process of fetus formation is full of breathtaking complexity as it involves the development of lungs, heart, gut, nerves, limbs, bones, blood vessels, cartilages, circulatory system, nervous system and excretory system. The constant wear and tear of muscles, joints and other vital body tissues takes place during the lifetime of human body. Due to the advancement of medical science, artificial limbs and transplantation have helped the human body to resume the day-to-day chores, but the biomaterials have revolutionized the world due to their capability to repair the damaged tissues by self-healing mechanism. These days, the bioactive materials have become an imperative and indispensable tool for the medical science due to their numerous advantages. Hence, the current focus is given on the history, categories and requirements of the biomaterials especially bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses).


Metallic Glass Simulated Body Fluid Bioactive Glass Phosphate Glass Strontium Ranelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramakrishna, S., Meyer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Comput. Sci. Technol. 61, 1189–1224 (2001)CrossRefGoogle Scholar
  2. 2.
    Kaur, G., et al.: A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J. Biomed. Mater. Res. A 102, 254–274 (2013)CrossRefGoogle Scholar
  3. 3.
    Rehman, M.N., Ray, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  4. 4.
    Kim, S.-S., Ahn, K.M., Park, M.S., Lee, J.-H., Choi, C.Y., Kim, B.-S.: A poly(lactide coglycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. 80A, 206–215 (2007)CrossRefGoogle Scholar
  5. 5.
    Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  6. 6.
    Hench, L.L.: Bioactive Ceramics, Annals of the New York Academy of Sciences, vol. 523, pp. 54–71. Wiley, New York (1988)Google Scholar
  7. 7.
    Yamamuro, T., Hench, L.L., Wilson, J.: Calcium phosphate and hydroxylapatite ceramics. In: Handbook of Bioactive Ceramics, vol 2. CRC Press, Boca Raton (1990)Google Scholar
  8. 8.
    Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, Q.Z., Rezwan, K., Armitage, D., Nazhat, S.N., Boccaccini, A.R.: The surface functionalization of 45S5 Bioglass (R)-based glass-ceramic scaffolds and its impact on bioactivity. J. Mater. Sci. Mater. Med. 17(11), 979–987 (2006)CrossRefGoogle Scholar
  10. 10.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)CrossRefGoogle Scholar
  11. 11.
    Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., et al.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005)CrossRefGoogle Scholar
  12. 12.
    Apelt, D., Theiss, F., El-Warrak, A.O., Zlinszky, K., Bettschart-Wolfisberger, R., Bohner, M., et al.: In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25, 1439–1451 (2004)CrossRefGoogle Scholar
  13. 13.
    Theiss, F., Apelt, D., Brand, B., Kutter, A., Zlinszky, K., Bohner, M., et al.: Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26, 4383–4394 (2005)CrossRefGoogle Scholar
  14. 14.
    LeGeros, R.Z., LeGeros, J.P.: Phosphate minerals in human tissues. In: Nriagu, J.O., Moore, P.B. (eds.) Phosphate Minerals, pp. 351–385. Springer-Verlag, Berlin (1984)CrossRefGoogle Scholar
  15. 15.
    Wagoner Johnson AJ: Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7, 16–30 (2011)CrossRefGoogle Scholar
  16. 16.
    Regi, M.V.: Ceramics for medical applications. J. Chem. Soc., Dalton Trans. 2, 97–108 (2001)CrossRefGoogle Scholar
  17. 17.
    Marcacci, M., Kon, E., Moukhachev, V., Lavroukov, A., Kutepov, S., Quarto, R., Mastrogiacomo, M., Cancedda, R.: Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of apilot clinical study. Tissue Eng. 13, 947–955 (2007)CrossRefGoogle Scholar
  18. 18.
    Baino, F., Brovarone, C.V.: Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res. A 97A, 514–535 (2010)CrossRefGoogle Scholar
  19. 19.
    Schlickewei, W., Schlickewei, C.: The use of bone substitutes in the treatment of bone defects—The clinical view and history. Macromol. Symp. 253, 10–23 (2007)CrossRefGoogle Scholar
  20. 20.
    Hoffenberg, R.: Christiaan Barnard: his first transplants and their impact on concepts of death. BMJ 323, 22–29 (2001)CrossRefGoogle Scholar
  21. 21.
    Alfani, D., et al.: Kidney transplantation from living unrelated donors. Clin. Transpl. 117, 205–212 (1998)Google Scholar
  22. 22.
    Vathsala, A.: Immunosuppression use in renal transplantation from Asian transplant centers: a preliminary report from the Asian Transplant Registry. Transpl. Proc. 36(7), 1868–1870 (2004)CrossRefGoogle Scholar
  23. 23.
    Ota, K.: Organ transplantation in Japan present status and problems. Transpl. Int. 2, 61–67 (1989)Google Scholar
  24. 24.
    Lysaght, M.J., Jaklenec, A., Deweerd, E.: Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 14(2), 305–315 (2008)CrossRefGoogle Scholar
  25. 25.
    Bruck, A., et al.: Heart-lung transplantation successful therapy for patients with pulmonary vascular disease. Engl. J. Med. 306, 557–564 (1982)CrossRefGoogle Scholar
  26. 26.
    Hench, L.L., Polak, J.M.: Third generation biomaterials. Science 295, 1014–1017 (2002)CrossRefGoogle Scholar
  27. 27.
    Darby, W.J.: In: Prasad, A.S., Oberleas, D. (eds.) Trace Elements in Human Health and Disease. Academic Press, New York, vol. 1, p. 17 (1976)Google Scholar
  28. 28.
    Seeley, R.R., Stephens, T.D.: Rate P Anatomy and physiology, 8th edn. McGrew Hill, New York (2006)Google Scholar
  29. 29.
    Soetan, K.O., Olaiya, C.O., Oyewole, O.E.: The importance of mineral elements for humans, domestic animals and plants: a review. Afr. J. Food Sci. 4, 200–222 (2010)Google Scholar
  30. 30.
    Whitney, E.N., Rolfes, S.R.: Understanding Nutrition. Wadsworth Publishing, Belmon (2010)Google Scholar
  31. 31.
    Schwarz, K.: A bound form of silicon in glycosaminoglycans and polyuronides. Proc. Natl. Acad. Sci. USA 70, 1608–1612 (1973)CrossRefGoogle Scholar
  32. 32.
    Barrett, A.J.: In: Florkin, M., Stotz, E.H. (eds.) Comprehensive Biochemistry. Elsevier, New York, vol. 26 B, pp. 438–442 (1968)Google Scholar
  33. 33.
    Birchall, J.D., Bellia, J.P., Roberts, N.B.: On the mechanisms underlying the essentiality of silicon interactions with aluminium and copper. Coord. Chem. Rev. 49, 231–240 (1996)Google Scholar
  34. 34.
    Murray, R.K., Granner, D.K., Mayer, P.A., Rodwell, V.W.: Harper’s Biochemistry, 25th edn. Mc-Graw Hill, Health Profession Division, USA (2000)Google Scholar
  35. 35.
    Meunier, P.J., Slosman, D.O., Delmas, P.D., Sebert, J.L., Brandi, M.L., Albanese, C., Lorenc, R., Pors-Nielsen, S., de Vernejoul, M.C., Roces, A., Reginster, J.Y.: Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial. J. Clin. Endocrinol. Metab. 87, 2060–2066 (2002)Google Scholar
  36. 36.
    Marie, P.J., Ammann, P., Boivin, G., Rey, C.: Mechanisms of action and therapeutic potential of strontium in bone. Calcif. Tissue Int. 69, 121–129 (2001)CrossRefGoogle Scholar
  37. 37.
    Kaur, G., Pandey, O.P., Singh, K.: Interfacial study between high temperature SiO2-B2O3-AO-La2O3 (A = Sr, Ba) glass seals and Crofer 22 APU for solid oxide fuel cell applications. Int. J. Hydrogen Energy 37, 6862–6874 (2012)CrossRefGoogle Scholar
  38. 38.
    Kaur, G., Sharma, P., Kumar, V., Singh, K.: Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater. Sci. Eng. C 32, 1941–1947 (2012)CrossRefGoogle Scholar
  39. 39.
    Madanat, R., Moritz, N., Vedel, E., Svedstro, E., Aro, H.T.: Radio-opaque bioactive glass markers for radiostereometric analysis. Acta Biomater. 5, 3497–3505 (2009)CrossRefGoogle Scholar
  40. 40.
    Zhang, J.C., Huang, J.A., Xu, S.J., Wang, K., Yu, S.F.: Effects of Cu2 + and pH on osteoclastic bone resorption in vitro. Prog. Nat. Sci. 13, 266 (2003)Google Scholar
  41. 41.
    Smith, B.J., King, J.B., Lucas, E.A., Akhter, M.P., Arjmandi, B.H., Stoecker, B.J.: Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J. Nutr. 132, 190–196 (2002)Google Scholar
  42. 42.
    Yamaguchi, M.: Role of zinc in bone formation and bone resorption. J. Trace Elem. Exp. Med. 11, 119–135 (1998)CrossRefGoogle Scholar
  43. 43.
    Sadarzadeh, S.M., Saffari, Y.: Iron and brain disorder. Am. J. Clin. Pathol. 121, 64–70 (2004)CrossRefGoogle Scholar
  44. 44.
    Filho, O.P., Latorre, G.P., Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45 S5. J. Biomed. Mater. Res. 30, 509–514 (1996)CrossRefGoogle Scholar
  45. 45.
    Kaur, G., et al.: Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci. Rep. 4, 1–14 (2014)CrossRefGoogle Scholar
  46. 46.
    Place, E.S., Evans, N.D., Stevens, M.M.: Complexity in biomaterials for tissue engineering. Nature 8, 457–470 (2009)CrossRefGoogle Scholar
  47. 47.
    Kaur, G., Pickrell, G., Sriranganathan, N., Kumar, V., Homa, D.: Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. (2015). doi: 10.1002/jbm.b.33443 Google Scholar
  48. 48.
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics, 2nd edn. John Wiley and Sons, New York (1976)Google Scholar
  49. 49.
    Shelby, J.E.: Introduction to Glass Science and Technology, 2nd edn. The Royal Society of Chemistry, Cambridge (2005)Google Scholar
  50. 50.
    Day, R.M., Boccaccini, A.R., Shurey, S., Roether, J.A., Forbes, A., Hench, L.L., Gabe, S.: Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials 25, 5857–5866 (2004)CrossRefGoogle Scholar
  51. 51.
    Fu, Q., Rahaman, M.N., Bal, B.S., Brown, R.F., Day, D.E.: Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 4, 1854–1864 (2008)CrossRefGoogle Scholar
  52. 52.
    Regi, M.V., Bala, F.: Silica material for biomedical applications. Open Biomed. Eng. J. 2, 1–9 (2008)CrossRefGoogle Scholar
  53. 53.
    Brink, M.: The influence of alkali and alkali earths on the working range for bioactive glasses. J. Biomed. Mater. Res. 36, 109–117 (1997)CrossRefGoogle Scholar
  54. 54.
    Huang, W.H., Day, D.E., Kittiratanapiboon, K., Rahaman, M.N.: Kinetics and mechanisms of the conversion of silicate (45 S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 17, 583–596 (2015)CrossRefGoogle Scholar
  55. 55.
    Zhang, X., Jia, W., Gua, Y., Wei, X., Liu, X., Wang, D., Zhang, C., Huang, W., Rahaman, M.N., Day, D.E., Zhou, N.: Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31, 5865–5874 (2010)CrossRefGoogle Scholar
  56. 56.
    Bunker, B.C., Arnold, G.W., Wilder, J.A.: Phosphate glass dissolution in aqueous solutions. J. Non Cryst. Solids 64, 291–316 (1984)CrossRefGoogle Scholar
  57. 57.
    Shah, R., Sinanan, A.C.M., Knowles, J.C., Hunt, N.P., Lewis, M.P.: Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials 26, 1497–1505 (2005)CrossRefGoogle Scholar
  58. 58.
    Branda, F., Arcobello-Varlese, F., Costantini, A., Luciani, G.: Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO·2SiO2 glass. Biomaterials 23, 711–716 (2002)CrossRefGoogle Scholar
  59. 59.
    Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRefGoogle Scholar
  60. 60.
    Bellantone, M., Williams, H.D., Hench, L.L.: Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob. Agents Chemother. 46, 1940–1945 (2002)CrossRefGoogle Scholar
  61. 61.
    Thamaraiselvi, T.V., Rajeswari, S.: Biological evaluation of bioceramic materials—a review. Trends Biomater. Artif. Organs 18, 9–17 (2004)Google Scholar
  62. 62.
    Horton, J.A., Parsell, D.E.: Biomedical potential of a zirconium-based bulk metallic glass. Mater. Res. Soc. Symp. Proc. 754, CC1.5.1 (2003)Google Scholar
  63. 63.
    Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. Rep. 44(2–3), 45–89 (2004)Google Scholar
  64. 64.
    Vallet-Regí, M., Izquierdo-Barba, I., Colilla, M.: Review: structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc. Lond. A 370, 1400–1421 (2002)CrossRefGoogle Scholar
  65. 65.
    Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43, 5980–5984 (2004)CrossRefGoogle Scholar
  66. 66.
    Vallet-Regi, M.: Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem. Eur. J. 12, 5934–5943 (2006)CrossRefGoogle Scholar
  67. 67.
    Hench, L.L.: The story of Bioglass Hench LL. The story of BioglassVR. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  68. 68.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  69. 69.
    Goel, A., Kapoor, S., Rajagopal, R.R., Pascual, M.J., Kim, H.W., Ferreira, J.M.F.: Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Acta Biomater. 8, 361–372 (2012)CrossRefGoogle Scholar
  70. 70.
    Liu, X., Huang, W., Fu, H., Yao, A., Wang, D., Pan, H., Lu, W.W.: Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 20, 365–372 (2009)CrossRefGoogle Scholar
  71. 71.
    Liu, X., Pan, H., Fu, H., Fu, Q., Rahaman, M.N., Huang, W.: Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution. Biomed. Mater. 5, 15005 (2010)CrossRefGoogle Scholar
  72. 72.
    Fu, Q., Rahaman, M.N., Bal, B.S., Bonewald, L.F., Kuroki, K., Brown, R.F.: Silicate borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J. Biomed. Mater. Res. A 95A, 172–179 (2010)CrossRefGoogle Scholar
  73. 73.
    Vitale-Brovarone, C., Baino, F., Bretcanu, O., Verne, E.: Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties. J. Mater. Sci. Mater. Med. 20, 2197–2205 (2009)CrossRefGoogle Scholar
  74. 74.
    Abou Neel, E.A., Chrzanowski, W., Pickup, D.M., O’Dell, L.A., Mordan, N.J., Newport, R.J., Smith, M.E., Knowles, J.C.: Structure and properties of strontium-doped phosphate-based glasses. J. R. Soc. Interface 6, 435–446 (2009)CrossRefGoogle Scholar
  75. 75.
    Cai, S., Xu, G.H., Yu, X.Z., Zhang, W.J., Xiao, Z.Y., Yao, K.D.: Fabrication and biological characteristics of b-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J. Mater. Sci. Mater. Med. 20, 351–358 (2009)CrossRefGoogle Scholar
  76. 76.
    Luderer, A.A., Borrelli, N.F., Panzarina, J.N., Mansfield, G.R., Hess, D.M., Brown, J.L., Barnett, E.H., Hawn, E.W.: Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. Radiat. Res. 94(1), 190–198 (1983)CrossRefGoogle Scholar
  77. 77.
    Singh, K., Bala, I., Kumar, V.: Structural, optical and bioactive properties of calcium borosilicate glasses. Ceram. Int. 35, 3401–3406 (2009)CrossRefGoogle Scholar
  78. 78.
    Singh, K., Bahadur, D.: Characterization of SiO2 ± Na2O ± Fe2O3 ± CaO ± P2O5 ± B2O3 glass ceramics. J. Mater. Sci. Mater. Med. 10, 481–484 (1999)CrossRefGoogle Scholar
  79. 79.
    Fu, Q., Saiz, E., Tomsia, A.P.: Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7, 3547–3554 (2011)CrossRefGoogle Scholar
  80. 80.
    Navarro, M., Ginebra, M.P., Clement, J., Martı́nez, S., Avila, G., Planell, J.A.: Physico-chemical degradation of soluble phosphate glasses stabilized with TiO2 for medical applications. J. Am. Ceram. Soc. 86, 1345–1352 (2003)CrossRefGoogle Scholar
  81. 81.
    Hiromoto, S., Tsai, A.P., Sumita, M.: Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci. 42(12), 2167–2185 (2000)CrossRefGoogle Scholar
  82. 82.
    Hiromoto, S., Tsai, A.P., Sumita, M.: Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5amorphous alloy in phosphate buffered solution. Corros. Sci. 42(12), 2167–2185 (2000)CrossRefGoogle Scholar
  83. 83.
    Horton, J.A., Parsell, D.E.: Biomedical potential of a zirconium-based bulk metallic glass. Mater. Res. Soc. Symp. Proc. 754, CC1.5.1 (2003)Google Scholar
  84. 84.
    Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. Rep. 44(2–3), 45–89 (2004)Google Scholar
  85. 85.
    Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. Rep. 44(2–3), 45–89 (2004)Google Scholar
  86. 86.
    Lopez-Noriega, A., et al.: Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem. Mater. 18, 3137–3144 (2006)CrossRefGoogle Scholar
  87. 87.
    Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43, 5980–5984 (2004)CrossRefGoogle Scholar
  88. 88.
    Lei, B., Chen, X.F., Wang, Y.J., Zhao, N.: Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater. Lett. 63, 1719–1721 (2009)CrossRefGoogle Scholar
  89. 89.
    Li, X., Wang, X., He, D., Shi, J.: Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem. 18, 4103–4109 (2008)CrossRefGoogle Scholar
  90. 90.
    Hong, Y., et al.: Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. Adv. Mater. 22, 754–758 (2010)CrossRefGoogle Scholar
  91. 91.
    Hong, Y.L., et al.: Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv. Funct. Mater. 20, 1503–1510 (2010)CrossRefGoogle Scholar
  92. 92.
    Wu, X., et al.: Chemical characteristics and hemostatic performances of ordered mesoporous calcium-doped silica xerogels. Biomed. Mater. 5, 035006 (2010). (9 pp)CrossRefGoogle Scholar
  93. 93.
    Zhu, M., et al.: Mesoporous bioactive glass-coated poly(L-lactic acid) scaffolds: a sustained antibiotic drug release system for bone repairing. J. Mater. Chem. 21, 1064–1072 (2001)CrossRefGoogle Scholar
  94. 94.
    Yun, H.S., Kim, S.E., Hyun, Y.T.: Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique. Mater. Chem. Phys. 115, 670–676 (2009)CrossRefGoogle Scholar
  95. 95.
    Kang, X., et al.: Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route. Dalton Trans. 40, 1873–1879 (2011)CrossRefGoogle Scholar
  96. 96.
    Zhao, S., Li, Y.B., Li, D.X.: Synthesis and in vitro bioactivity of CaO–SiO2–P2O5 mesoporous microspheres. Microporous Mesoporous Mater. 135, 67–73 (2010)CrossRefGoogle Scholar
  97. 97.
    Rahaman, et al.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  98. 98.
    Oki, A., Parveen, B., Hossain, S., Adeniji, S., Donahue, H.: Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. J. Biomed. Mater. Res. A 69(2), 216–221 (2004)CrossRefGoogle Scholar
  99. 99.
    O’Donnell, M.D., Watts, S.J., Hill, R.G., Law, R.V.: The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J. Mater. Sci. Mater. Med. 20, 1611–1618 (2009)CrossRefGoogle Scholar
  100. 100.
    Courtheoux, L., Lao, J., Nedelec, J.M., Jallot, E.: Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. J. Phys. Chem. C 112, 13663–13667 (2008)CrossRefGoogle Scholar
  101. 101.
    Yang, X., et al.: Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J. Non Cryst. Solids 358, 1171–1179 (2012)CrossRefGoogle Scholar
  102. 102.
    Li, H.C., Wang, D.G., Hu, J.H., Chen, C.Z.: Crystallization, mechanical properties and in vitro bioactivity of sol-gel derived Na2O–CaO–SiO2–P2O5 glass–ceramics by partial substitution of CaF2 for CaO. J. Sol-Gel. Sci. Technol. 67(1), 56–65 (2013)CrossRefGoogle Scholar
  103. 103.
    Doostmohammadi, A., et al.: Bioactive glass nanoparticles with negative zeta potential. Ceram. Int. 37, 2311–2316 (2011)CrossRefGoogle Scholar
  104. 104.
    De Oliveira, A.A.R., et al.: Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed. Mater. 8, 025011 (2011). (14 pp)CrossRefGoogle Scholar
  105. 105.
    Du, R.L., Chang, J., Ni, S.Y., Zhai, W.Y.: Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J. Biomater. Appl. 20, 341–360 (2006)CrossRefGoogle Scholar
  106. 106.
    Jones, J.R., Ehrenfried, L.M., Hench, L.L.: Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006)CrossRefGoogle Scholar
  107. 107.
    Agathopoulos, S., et al.: Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials 27, 1832–1840 (2006)CrossRefGoogle Scholar
  108. 108.
    Pazo, A., Saiz, E., Tomsia, A.P.: Silicate glass coatings on Ti-based implants. Acta Mater. 46, 2551–2558 (1998)CrossRefGoogle Scholar
  109. 109.
    Saiz, E., Goldman, M., Gomez-Vega, J.M., Tomsia, A.P., Marshall, G.W., Marshall, S.J.: In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials 23, 3749–3756 (2002)CrossRefGoogle Scholar
  110. 110.
    Boyd, D., Towler, M.R.: The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J. Mater. Sci. Mater. Med. 16, 843–850 (2005)CrossRefGoogle Scholar
  111. 111.
    Oudadesse, H., et al.: Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomed. Mater. 6, 035006 (2011)CrossRefGoogle Scholar
  112. 112.
    Uo, M., et al.: Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19, 2277–2284 (1998)CrossRefGoogle Scholar
  113. 113.
    Aina, V., et al.: Cytotoxicity of zinc containing bioactive glasses in contact with human osteoblasts. Chem. Biol. Interact. 167, 207–218 (2007)CrossRefGoogle Scholar
  114. 114.
    Aina, V., Malavasi, G., Pla, A.F., Munaron, L., Morterra, C.: Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. 5, 1211–1222 (2009)CrossRefGoogle Scholar
  115. 115.
    Goel, A., et al.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1, 3073–3082 (2013)CrossRefGoogle Scholar
  116. 116.
    Kapoor, S., et al.: Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater. 10, 3264–3278 (2014)CrossRefGoogle Scholar
  117. 117.
    Murphy, S., Wren, A.W., Towler, M.R., Boyd, D.: The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibilty. J. Mater. Sci. Mater. Med. 21, 2827–2834 (2010)CrossRefGoogle Scholar
  118. 118.
    Murphy, S., Boyd, D., Moane, S., Bennett, M.: The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J. Mater. Sci. Mater. Med. 20, 2028–2035 (2009)CrossRefGoogle Scholar
  119. 119.
    Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J. Non Cryst. Solids 356, 2546–2551 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gurbinder Kaur
    • 2
    Email author
  • Steven Grant Waldrop
    • 1
  • Vishal Kumar
    • 3
  • Om Prakash Pandey
    • 2
  • Nammalwar Sriranganathan
    • 1
  1. 1.BlacksburgUSA
  2. 2.SPMSThapar UniversityPatialaIndia
  3. 3.SGGSWUFatehgarh SahibIndia

Personalised recommendations