Skip to main content

Future Applications of Bioglass

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

Bioglass,since its inception has grown in its forms as well as its applications by leaps and bounds.Within its identified applications,the lack of its adverse effects has been its strength. To widen its horizon of uses,multitude of clinical studies are and have been conducted. An elaborate version has been given fieldwise in the previous chapters of our book. In this last chapter,a venture has been made to encompass bioglass's uses with its future implications, the restrictions around which we have to learn to work, and the possible improvisations to make such endeavours more successful. This insight is going to be effective in making bioglass the “Wonder Material” it is to be.

This Chapter is dedicated to my husband S. Shanmugham, for being everything to me, and My children Sharan Vidash and Mithil Vidash for giving purpose to my deeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please consult the Editor's note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses

References

  1. Joughehdoust, S., et al.: Synthesis and in vitro investigation of sol–gel derived bioglass-58S nanopowders. Mater. Sci. Pol. 30(1), 45–52 (2012)

    Google Scholar 

  2. Lutz-Christian, G., et al.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3, 3867–3910 (2010)

    Google Scholar 

  3. Wei, L., et al.: Bioactive glasses; traditional and prospective applications in healthcare. Hot Top. Biomater. 56–68 (2014)

    Google Scholar 

  4. Werner, V., et al.: The development of bioglass for medical applications. Angew Wandte Chem. Int. Ed. 26(6), 527(1987)

    Google Scholar 

  5. Gentleman, E., et al.: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31(14), 3949–3956 (2010)

    Article  Google Scholar 

  6. Kim, H.W., et al.: Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv. Funct. Mater. 16, 1529–1535 (2006)

    Article  Google Scholar 

  7. Ulrike, R., et al.: In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7, 1957–1974 (2014)

    Google Scholar 

  8. Jell, G., et al.: Gene activation by bioactive glasses. J. Mater. Sci. Mater. Med. 17, 997–1002 (2006)

    Google Scholar 

  9. Brahatheeswaran, D.: Polymeric scaffolds in tissue engineering application. Int. J. Polym. Sci. Article ID 290602 (2011)

    Google Scholar 

  10. Hafezi, F., et al.: Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J. Mater. Sci. Mater. Med. 23, 2783–2792 (2012)

    Article  Google Scholar 

  11. Joao, C., et al.: Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue application. Curr. Trends Glass Ceram. Mater. 87–115 (2012)

    Google Scholar 

  12. Day, R.M., et al.: In vitro and in vivo analysis of macroporous biodegradable poly(d,l-lactide-co-glycolide) scaffolds containing bioactive glass. J. Biomed. Mater. Res. Part A 75, 778–787 (2005)

    Google Scholar 

  13. Gorustovich, A., et al.: Effect of bioactive glasses on angiogenesis: in-vitro and in-vivo evidence. A review. Tissue Eng. Part B Rev. 16, 199–207 (2010)

    Google Scholar 

  14. Day, R.M., et al.: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitr. Tissue Eng. 11, 768–777 (2005)

    Article  Google Scholar 

  15. Pity, I.S., et al.: Aniogenesis, p 53 and Bcl2 in colorectal carcinoma. Int. J. Adv. Res. Technol. 2(3), p.i (2013)

    Google Scholar 

  16. Wren, A.W., et al.: Fabrication of CaO-NaO-SiO2/TiO2 scaffolds for surgical applications. J. Mater. Sci. Mater. Med. 23(12), 2881 (2012)

    Google Scholar 

  17. Durgalakshmi, D., et al.: Nano-bioglass: a versatile antidote for bone tissue engineering problems. Proc. Eng. 92, 2–8 (2014)

    Google Scholar 

  18. Nowakowska, D., et al.: Dynamic oxido reductive potential of astringent retraction agents. Folia Biol. (Praha) 56(6), 263 (2010)

    Google Scholar 

  19. Labbaf, S., et al.: Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32, 1010–1018 (2011)

    Article  Google Scholar 

  20. Conner S.D. et al: Regulated portals of entry into the cell. Nature 422(6927), 37–44 (2003)

    Google Scholar 

  21. Hild W.A., et al.: Quantum dots-nano-sized probes for the exploration of cellular and intracellular targeting. Eur. J. Pharm. Biopharm. 68(2), 153–168 (2008)

    Google Scholar 

  22. Foncea, et al.: Endothelial cell oxidative stress and signal transduction. Biol. Res. 33, 89–96 (2000)

    Google Scholar 

  23. Kharasch et al.: Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1(trifluoromethyl)vinyl ether(“compound a”) in rats. Toxicol. Sci. 90, 419–431 (2006)

    Google Scholar 

  24. Lin, W.S., et al.: In Vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217(3), 252–259 (2006)

    Article  Google Scholar 

  25. Yuan, Y., et al.: Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 09, 088 (2009)

    Google Scholar 

  26. Park, J.H., et al.: Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20(9), 1630.5 (2008)

    Google Scholar 

  27. Park, J.H., et al.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8(4), 331–336 (2009)

    Google Scholar 

  28. Tsai, C.P., et al.: High contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small 4(2), 186–191 (2008)

    Google Scholar 

  29. Huang, X. et al: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3), 438–48 (2009)

    Google Scholar 

  30. Guang, D.L., et al.: Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater. Sci. Eng. C 30(1), 148–153 (2010)

    Google Scholar 

  31. Shah, S.A., et al.: Magnetic and bioactivity evaluation of ferromagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J. Magn. Magn. Mater. (Impact Factor 2) 322(3), 375–381 (2010)

    Google Scholar 

  32. Jebahi, S., et al.: Therapeutic potential of curcumin encapsulated bioglass-chitosan: cytocompatibility, 1 anticoagulant, oxidative stress, mechanical properties and bone collagen cross-links 2 following exposure to ionizing radiation in a rat model. Turk. J. Biol. ISSN:1300-0152E-ISSN:1303 6092; online avlb;15/3/15

    Google Scholar 

  33. Hench, L.L., et al.: Interactions between bioactive glass and collagen: a review and new perspectives. J. Aust. Ceram. Soc. 49(2), 1–40 (2013)

    Google Scholar 

  34. Farre-Guasch, E., et al.: Human maxillary sinus floor elevation as a model for bone regeneration enabling the application of one-step surgical procedures. Tissue Eng. Part B Rev., pp 1–14 (2012)

    Google Scholar 

  35. Hall, M.B., et al.: Early clinical trials of 45S5 bioglass for endosseous alveolar ridge maintainance implants. In: Excerpta medica proceedings international congress on tissue integration and maxillofacial reconstruction, Brussels, vol. 2, pp. 48–252. Elsevier Science Publishers BV, Amsterdam (1985)

    Google Scholar 

  36. Clark, A.E., et al.: Clinical trials of bioglass implants for alveolar ridge maintenance. J Dent Res 65(spec issue), 304 (1986)

    Google Scholar 

  37. Stanley, H.R., et al.: The implantation of natural tooth from bioglass in baboons-long term results. Int. J. Oral Implant 2, 26–36 (1980)

    Google Scholar 

  38. Stanley, H.R., Hall, M., et al.: Research protocol and consent form for project entitled: preservation of alveolar ridge with the intraosseous implantation of root shaped cones made of bio glass. Gainesville FL, University of Florida, J.H.Miller Health Center (1983)

    Google Scholar 

  39. Weinstein, A.M., et al.: Implant-bone characteristics of bioglass dental implants. J. Biomed. Mater. Res. 14, 23–29 (1980)

    Article  Google Scholar 

  40. Mistry, S., et al.: Indigenous hydroxyapatite coated and bioactive glass coated titanium dental implant system—fabrication and application in humans. J. Indian Soc. Periodontol. 15(3), 215–220 (2011)

    Google Scholar 

  41. Gilam, D.G., Tang, J.Y., et al.: The effects of a novel bioglass dentrifice on dentine sensitivity: a scanning electron microscopy investigation. J. Oral Rahabil. 30(4), 446 (2003)

    Google Scholar 

  42. Forsback, A.P., et al.: Mineralisation of dentin induced by treatment with bioactive glass s53p4 in vitro. Acta Odontol Scand. 62(1), 14–20 (2004)

    Google Scholar 

  43. Curtis, et al.: Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater. 6(9), 3740–3746 (2010)

    Google Scholar 

  44. Prabhakar, A.R., et al.: Comparison of the remineralising effects of sodium fluoride and bioactive glass using bioerodible gel systems. Dent. Res. Dent. Clin. Dent. Prospect. 3(4), 11–121 (2009)

    Google Scholar 

  45. Jennings, D., et al.: Quantitative analysis of tubule occlusion using NovaMin (sodium calcium phosphosilicate). J. Dent. Res. 83, 2416 (2006)

    Google Scholar 

  46. Burwell, A., et al.: Quantitative tubule occlusion in an in vitro remineralization/demineralization model. J. Dent. Res. 85, 568 (2006)

    Google Scholar 

  47. Litknowski L.J., et al.: A clinical study of the effect of calcium sodium phosphosilicate on dentin hypersensitivity—proof of principle. J. Clin. Dent. 21, 77–81 (2010)

    Google Scholar 

  48. Du, M.Q., et al.: Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (NovaMin) for the treatment of dentin hypersensitivity. Am. J. Dent. 21, 210–214 (2008)

    Google Scholar 

  49. Sharma, et al.: A clinical study comparing oral formulations containing 7.5 % calcium sodium phsophosilicate (NovaMin), 5 % potassium nitrate, and 0.4 % stannous fluoride for the management of dentin hypersensitivity. J. Clin. Dent. 21(88–92), 178–180 (2010)

    Google Scholar 

  50. Zhang, D., et al.: Antibacterial effects and dissolution behavior of six bio active glasses. J. Control Release 139(2), 118–26 (2009)

    Google Scholar 

  51. Han, P.P., et al.: The cementogenic differentiation of periodontal-ligament cells via the activation of Wnt/β-catenin signalling pathways by Li ions released from bioactive scaffolds. Biomaterials 33, 6370–6379 (2012)

    Article  Google Scholar 

  52. Kamitakahara, M., et al.: J. Ceram. Soc. Jpn. 108(12), 1117–1118 (2000)

    Google Scholar 

  53. Diba, M., et al.: Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glass Sci. 3(3), 221–253 (2012)

    Article  Google Scholar 

  54. Published Patent 3 July 2014. Pub no WO2014102538 A1 by inventors, Felora MIRVAKILY) Cheryl Miller, Paul V. HATTON

    Google Scholar 

  55. Bergey, D., et al.: Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. PNAS 102(32), 11539–11544 (2005)

    Google Scholar 

  56. Zhang, Y., et al.: Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33, 6698e6708 (2012)

    Google Scholar 

  57. Zhang, X., et al.: Borate bioglass based drug delivery of teicoplanin for treating osteomyleitis. J. Inorg. Mater. 25(3), 293–298 (2010)

    Google Scholar 

  58. Xie, Z., et al.: Treatment of osteomylelitis and repair of bone effect by degradable bioactive glass releasing vancomycin. J. Control. Release 39(2), 8–26 (2009)

    Google Scholar 

  59. Makoto, O., et al.: A novel skeletal drug delivery system using self setting bioactive glass bone cement III: the invitro drug release from bone cement containing indomethacin and its physicochemical properties. J. Control. Release 31(2), 118–126 (1994)

    Google Scholar 

  60. Pillay, V., et al.: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. Article ID 789289, (2013)

    Google Scholar 

  61. Lakhkar, N.J., et al.: Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Adv. Drug Deliv. Rev. 65, 405–420 (2013)

    Google Scholar 

  62. Van Gestel, N.A.P., et al.: Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. BioMed Res. Int. ArticleID 68482

    Google Scholar 

  63. Young-Phil, K., et al.: Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J. Tissue Eng. Regen. Med. 9, 236–246 (2015)

    Google Scholar 

  64. Fenoglio, I., et al.: Free radical generation in the toxicity of inhaled mineral particles: the role of iron speciation at the surface of asbestos and silica. Redox Rep. 6, 235–241 (2001)

    Google Scholar 

  65. Prior, S., et al.: Int. J. Pharm. 196(1), 115–125 (2000)

    Article  Google Scholar 

  66. Andriano, K.P., et al.: J. Appl. Biomater. 5(2), 133–140 (1994)

    Article  Google Scholar 

  67. Cohn, D., et al.: Biomaterials 25(27), 5875–5884 (2004)

    Article  Google Scholar 

  68. Fernández, J., et al.: J. Mech. Behav. Biomed. Mater. 9, 100–112 (2012)

    Article  Google Scholar 

  69. Larranaga, A., et al.: Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polym. Degrad. Stab. 98, 751–758 (2013)

    Google Scholar 

  70. Jones, J.R., et al.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Google Scholar 

  71. Martin, R.A. etal.: Characterizing the hierarchial structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Trans. R. Soc. A 370, 1422–43 (2012)

    Google Scholar 

  72. Hench, L.H.: Opening paper 2015—some comments on bioglass: four eras of discovery and development. Biomed. Glasses 1, 1–11 (2015); De Gruyter Open

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krishnan, V. (2016). Future Applications of Bioglass. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_13

Download citation

Publish with us

Policies and ethics