Skip to main content

Biocompatible Glasses for Controlled Release Technology

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

In order to treat, relief or prevent diseases, new drugs and alternative procedures have been continuously developed. Recently, the introduction of concepts involving controlled release technology brought new perspectives for the development of drug systems. These systems aim to diminish drugs side effects and, at the same time, to increase their efficacy. In this sense, bioactive glasses have been used as new carrier systems to delivery ions, bioactive molecules (including drugs) and even cells. In this chapter, it was covered most of the main characteristics of bioactive glasses that must be take into account during the development of new carrier systems: glass composition, morphology and its interaction with the chosen drug. A relevant discussion about composites consisted of polymer/bioactive glasses was also included along the chapter. Finally, some of the most recent pharmacological breakthroughs using bioactive glasses are reviewed, such as applications in bone regeneration, osteomyelitis and cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., et al.: General principles of cell communication. In: NCBI Bookshelf. Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  2. Wilson, C.G.: The need for drugs and drug delivery systems. In: Siepmann, J., et al. (eds.) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology, pp. 3–18 (2012). doi:10.1007/978-1-4614-0881-9_9

    Google Scholar 

  3. Arcos, D., Vallet-Regí, M.: Bioceramics for drug delivery. Acta Mater. 61, 890–911 (2013). doi:10.1016/j.actamat.2012.10.039

    Article  Google Scholar 

  4. Yun, Y.H., Lee, B.K., Park, K.: Controlled drug delivery: historical perspective for the next generation. J. Controlled Release 219, 2–7 (2015). doi:10.1016/j.jconrel.2015.10.005

    Article  Google Scholar 

  5. Mager, D.E.: Quantitative structure–pharmacokinetic/pharmacodynamic relationships. Adv. Drug Deliv. Rev. 58, 1326–1356 (2006). doi:10.1016/j.addr.2006.08.002

    Article  Google Scholar 

  6. Gabrielsson, J., Green, A.R.: Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J. Pharmacol. Exp. Ther. 331, 767–774 (2009). doi:10.1124/jpet.109.157172

    Article  Google Scholar 

  7. Asín-Prieto, E., Rodríguez-Gascón, A., Isla, A.: Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 21, 319–329 (2015). doi:10.1016/j.jiac.2015.02.001

    Article  Google Scholar 

  8. Acharya, G., Park, K.: Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev. 58, 387–401 (2006). doi:10.1016/j.addr.2006.01.016

    Article  Google Scholar 

  9. Lee, J.H., Yeo, Y.: Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015). doi:10.1016/j.ces.2014.08.046

    Article  Google Scholar 

  10. Hughes, G.A.: Nanostructure-mediated drug delivery. Nanomed. Nanotechnol. Biol. Med. 1, 22–30 (2005). doi:10.1016/j.nano.2004.11.009

    Article  Google Scholar 

  11. Tiwari, G., et al.: Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2, 2–11 (2012). doi:10.4103/2230-973X.96920

    Article  Google Scholar 

  12. Reddy, L.H., Bazile, D.: Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv. Drug Deliv. Rev. 71, 34–57 (2014). doi:10.1016/j.addr.2013.10.007

    Article  Google Scholar 

  13. Hum, J., Boccaccini, A.R.: Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. Med. 23, 2317–2333 (2012). doi:10.1007/s10856-012-4580-z

    Article  Google Scholar 

  14. Wu, C., Chang, J.: Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus 2, 292–306 (2012). doi:10.1098/rsfs.2011.0121

    Article  Google Scholar 

  15. Park, K.: Facing the truth about nanotechnology in drug delivery. ACS Nano 7, 7442–7447 (2013). doi:10.1021/nn404501g

    Article  Google Scholar 

  16. Park, K.: Drug delivery of the future: controlled drug delivery systems: past forward and future back. J. Controlled Release 190, 3–8 (2014). doi:10.1016/j.jconrel.2014.03.054

    Article  Google Scholar 

  17. Zhang, Y., Chan, H.F., Leong, K.W.: Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013). doi:10.1016/j.addr.2012.10.003

    Article  Google Scholar 

  18. Safari, J., Zarnegar, Z.: Advanced drug delivery systems: nanotechnology of health design: a review. J. Saudi Chem. Soc. 18, 85–99 (2014). doi:10.1016/j.jscs.2012.12.009

    Article  Google Scholar 

  19. Park, K.: Drug delivery of the future: chasing the invisible gorilla. J. Controlled Release (2015). doi:10.1016/j.jconrel.2015.10.048

    Google Scholar 

  20. Xia, Y., Pack, D.W.: Uniform biodegradable microparticle systems for controlled release. Chem. Eng. Sci. 125, 129–143 (2015). doi:10.1016/j.ces.2014.06.049

    Article  Google Scholar 

  21. Torchilin, V.: Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009). doi:10.1016/j.ejpb.2008.09.026

    Article  Google Scholar 

  22. Sarkhel, S., et al.: High-throughput in vitro drug release and pharmacokinetic simulation as a tool for drug delivery system development: application to intravitreal ocular administration. Int. J. Pharm. 477, 469–475 (2014). doi:10.1016/j.ijpharm.2014.10.062

    Article  Google Scholar 

  23. Tongwen, X., Binglin, H.: Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int. J. Pharm. 170, 139–149 (1998). doi:10.1016/S0378-5173(97)00402-X

    Article  Google Scholar 

  24. Siepmann, J., Siepmann, S.: Mathematical modeling of drug delivery. Int. J. Pharm. 364, 328–343 (2008). doi:10.1016/j.ijpharm.2008.09.004

    Article  Google Scholar 

  25. Fu, Y., Kao, W.J.: Drug release kinetics and transport mechanisms of nondegradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010). doi:10.1517/17425241003602259

    Article  Google Scholar 

  26. Raval, A., Parikh, J., Engineer, C.: Mechanism of controlled release kinetics from medical devices. Braz. J. Chem. Eng. 27, 211–225 (2010). doi:10.1590/S0104-66322010000200001

    Google Scholar 

  27. Mönkäre, J., et al.: Characterization of internal structure, polymer erosion and drug release mechanisms of biodegradable poly(ester anhydride)s by X-ray microtomography. Eur. J. Pharm. Sci. 47, 170–178 (2012). doi:10.1016/j.ejps.2012.05.013

    Article  Google Scholar 

  28. Cheng, W., Gu, L., Ren, W., Liu, Y.: Stimuli-responsive polymers for anti-cancer drug delivery. Mater. Sci. Eng. C 45, 600–608 (2014). doi:10.1016/j.msec.2014.05.050

    Article  Google Scholar 

  29. Kaim, W., Schwederski, B., Klein, A.: Bioinorganic chemisitry—inorganic elements in the chemistry of life: an introduction and guide. In: Kaim, W., Schwederski, B., Klein, A. (eds.), 1st edn. John Wiley and Sons, Chichester (2013). ISBN: 9780470975237

    Google Scholar 

  30. Hoppe, A., Mourino, V., Boccaccini, A.R.: Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. 1, 254–256 (2013). doi:10.1039/c2bm00116k

    Article  Google Scholar 

  31. Zanotto, E.D., Coutinho, F.A.B.: How many non-crystalline solids can be made from all the elements of the periodic table? J. Non Cryst. Solids 347, 285–288 (2004). doi:10.1016/j.jnoncrysol.2004.07.081

    Article  Google Scholar 

  32. Shruti, S., Salinas, A.J., Ferrari, E., et al.: Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater. 180, 92–101 (2013). doi:10.1016/j.micromeso.2013.06.014

    Article  Google Scholar 

  33. El-Kady, A.M., Ali, A.F., Rizk, R.A., Ahmed, M.M.: Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram. Int. 38, 177–188 (2012). doi:10.1016/j.ceramint.2011.05.158

    Article  Google Scholar 

  34. Wu, C., Chang, J.: Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control Release 193, 1–14 (2014). doi:10.1016/j.jconrel.2014.04.026

    Article  Google Scholar 

  35. Xia, W., Chang, J.: Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J. Control Release 110, 522–530 (2006). doi:10.1016/j.jconrel.2005.11.002

    Article  Google Scholar 

  36. Zhu, Y., Zhu, M., He, X., et al.: Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomater. 9, 6723–6731 (2013). doi:10.1016/j.actbio.2013.01.021

    Article  Google Scholar 

  37. Ye, J., He, J., Wang, C., et al.: Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol. Lett. 36, 961–968 (2014). doi:10.1007/s10529-014-1465-x

    Article  Google Scholar 

  38. Rahaman, M.N., Bal, B.S., Huang, W.: Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints. Mater. Sci. Eng. C 41, 224–231 (2014). doi:10.1016/j.msec.2014.04.055

    Article  Google Scholar 

  39. Kouhi, M., Morshed, M., Varshosaz, J., Fathi, M.H.: Poly (ε-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem. Eng. J. 228, 1057–1065 (2013). doi:10.1016/j.cej.2013.05.091

    Article  Google Scholar 

  40. Manzano, M., Vallet-Regi, M.: Revising bioceramics: bone regenerative and local drug delivery systems. Prog. Solid State Chem. 40, 17–30 (2012). doi:10.1016/j.progsolidstchem.2012.05.001

    Article  Google Scholar 

  41. Provenzano, M.J., Murphy, K.P.J., Riley, L.H.: Bone cements: review of their physiochemical and biochemical properties in percutaneous vertebroplasty. Am. J. Neuroradiol. 25, 1286–1290 (2004)

    Google Scholar 

  42. Olalde, B., Garmendia, N., Sáez-Martínez, V., et al.: Multifunctional bioactive glass scaffolds coated with layers of poly(d, l-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. Mater. Sci. Eng. C 33, 3760–3767 (2013). doi:10.1016/j.msec.2013.05.002

    Article  Google Scholar 

  43. Li, W., Ding, Y., Rai, R., et al.: Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater. Sci. Eng. C 41, 320–328 (2014). doi:10.1016/j.msec.2014.04.052

    Article  Google Scholar 

  44. Li, W., Nooeaid, P., Roether, J.A., et al.: Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass??-based glass-ceramic scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 34, 505–514 (2014). doi:10.1016/j.jeurceramsoc.2013.08.032

    Article  Google Scholar 

  45. Cui, X., Gu, Y., Li, L., et al.: In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites. J. Mater. Sci. Mater. Med. 24, 2391–2403 (2013). doi:10.1007/s10856-013-4996-0

    Article  Google Scholar 

  46. Ding, H., Zhao, C.J., Cui, X., et al.: A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS ONE 9, 1–9 (2014). doi:10.1371/journal.pone.0085472

    Article  Google Scholar 

  47. Hong, K.S., Kim, E.C., Bang, S.H., et al.: Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J. Biomed. Mater. Res., Part A 94, 1187–1194 (2010). doi:10.1002/jbm.a.32799

    Google Scholar 

  48. Rivadeneira, J., et al.: Novel antibacterial bioactive glass nanocomposite functionalized wuth tetracycline hydrochloride. Biomed. Glasses 1, 128–135 (2015). doi:10.1515/bglass-2015-0012

    Article  Google Scholar 

  49. Patel, K.D., El-Fiqi, A., Lee, H.-Y., et al.: Chitosan–nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J. Mater. Chem. 22, 24945–24956 (2012). doi:10.1039/c2jm33830k

    Article  Google Scholar 

  50. Ordikhani, F., Simchi, A.: Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl. Surf. Sci. 317, 56–66 (2014). doi:10.1016/j.apsusc.2014.07.197

    Article  Google Scholar 

  51. Pishbin, F., Mouriño, V., Flor, S., et al.: Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl. Mater. Interfaces 6, 8796–8806 (2014). doi:10.1021/am5014166

    Article  Google Scholar 

  52. Kresge, C.T., Leonowicz, M.E., Roth, W.J., et al.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  Google Scholar 

  53. Yan, X., Yu, C., Zhou, X., et al.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43, 5980–5984 (2004). doi:10.1002/anie.200460598

    Article  Google Scholar 

  54. Yan, X., Huang, X., Yu, C., et al.: The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials 27, 3396–3403 (2006). doi:10.1016/j.biomaterials.2006.01.043

    Article  Google Scholar 

  55. Haro Durand, L.A., Góngora, A., Porto López, J.M., et al.: In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system. J. Mater. Chem. B 2, 7620–7630 (2014). doi:10.1039/C4TB01043D

    Article  Google Scholar 

  56. Hoppe, A., Güldal, N.S., Boccaccini, A.R.: Biomaterials A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011). doi:10.1016/j.biomaterials.2011.01.004

    Article  Google Scholar 

  57. Zhang, Y., Wei, L., Chang, J., et al.: Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J. Mater. Chem. B 1, 5711 (2013). doi:10.1039/c3tb21047b

    Article  Google Scholar 

  58. Mendes, L.S., Saska, S., Martines, M.A.U., Marchetto, R.: Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 4427–4434 (2013). doi:10.1016/j.msec.2013.06.040

    Article  Google Scholar 

  59. Li, X., Chen, X., Miao, G., et al.: Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. J. Mater. Chem. B 2, 7045–7054 (2014). doi:10.1039/C4TB00883A

    Article  Google Scholar 

  60. Wu, C., Fan, W., Chang, J., Xiao, Y.: Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor. J. Biomater. Appl. 28, 367–374 (2013). doi:10.1177/0885328212453635

    Article  Google Scholar 

  61. Wu, C., Zhou, Y., Chang, J., Xiao, Y.: Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 9, 9159–9168 (2013). doi:10.1016/j.actbio.2013.06.026

    Article  Google Scholar 

  62. Perez, R., El-Fiqi, A., Park, J.-H., et al.: Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomater. 10, 520–530 (2014). doi:10.1016/j.actbio.2013.09.042

    Article  Google Scholar 

  63. Zeng, Q., Han, Y., Li, H., Chang, J.: Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 102, 42–51 (2014). doi:10.1002/jbm.b.32978

    Article  Google Scholar 

  64. Wu, C., Fan, W., Chang, J.: Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013). doi:10.1039/c3tb20275e

    Article  Google Scholar 

  65. Zhang, J., Zhao, S., Zhu, M., et al.: 3D-printed magnetic Fe 3 O 4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B 2, 7583–7595 (2014). doi:10.1039/C4TB01063A

    Article  Google Scholar 

  66. Lin, H.-M., Lin, H.-Y., Chan, M.-H.: Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J. Mater. Chem. B 1, 6147 (2013). doi:10.1039/c3tb20867b

    Article  Google Scholar 

  67. Mouriño, V., Newby, P., Pishbin, F., et al.: Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter 7, 6705 (2011). doi:10.1039/c1sm05331k

    Article  Google Scholar 

  68. Chengtie, Wu, Chang, Jiang, Fan, Wei: Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J. Mater. Chem. 22, 16801–16809 (2012). doi:10.1039/c2jm33387b

    Article  Google Scholar 

  69. Miola, M., Vitale-Brovarone, C., Mattu, C., Verné, E.: Antibiotic loading on bioactive glasses and glass-ceramics: an approach to surface modification. J. Biomater. Appl. 28, 308–319 (2013). doi:10.1177/0885328212447665

    Article  Google Scholar 

  70. Ehlert, N., Badar, M., Christel, A., et al.: Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. J. Mater. Chem. 21, 752 (2011). doi:10.1039/c0jm01487g

    Article  Google Scholar 

  71. Mabrouk, M., Mostafa, A.A., Oudadesse, H., et al.: Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram. Int. 40, 4833–4845 (2014). doi:10.1016/j.ceramint.2013.09.033

    Article  Google Scholar 

  72. Liu, X., Xie, Z., Zhang, C., et al.: Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J. Mater. Sci. Mater. Med. 21, 575–582 (2010). doi:10.1007/s10856-009-3897-8

    Article  Google Scholar 

  73. Jia, W.T., Zhang, X., Luo, S.H., et al.: Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 6, 812–819 (2010). doi:10.1016/j.actbio.2009.09.011

    Article  Google Scholar 

  74. Zhang, X., Jia, W., Gu, Y., et al.: Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31, 5865–5874 (2010). doi:10.1016/j.biomaterials.2010.04.005

    Article  Google Scholar 

  75. Xie, Z., Cui, X., Zhao, C., et al.: Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob. Agents Chemother. 57, 3293–3298 (2013). doi:10.1128/AAC.00284-13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Marchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borges, R., Kai, K.C., Marchi, J. (2016). Biocompatible Glasses for Controlled Release Technology. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_12

Download citation

Publish with us

Policies and ethics