Skip to main content

The Great Plume Debate

  • Chapter
  • First Online:
Mantle Plumes and Their Effects

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 786 Accesses

Abstract

The plume hypothesis (Morgan in Nature 230:42–43, 1971, Bulletin of the American Association of Petroleum Geologists 56:203–213, 1972a, Geological Society of America Memoir 132:7–22, 1972b) has been developed during the 1970s to explain several intraplate volcanic provinces on the earth’s surface, apparently not explained by plate tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The pictures in this chapter are intended to bring some humor into this academic conundrum, and are not to be taken seriously.

References

  • Albers M, Christensen U (1996) The excess temperature of plumes rising from the core-mantle boundary. Geophys Res Lett 23:3567–3570

    Article  Google Scholar 

  • Anderson DL (1987) A seismic equation of state II: Shear properties and thermodynamics of the lower mantle. Phys Earth Planet Inter 45:307–323

    Article  Google Scholar 

  • Anderson DL (1989) Theory of the earth. Blackwell Scientific Publications, Boston, p 366

    Google Scholar 

  • Anderson DL (1994a) The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs. Earth Planet Sci Lett 123:269–280

    Article  Google Scholar 

  • Anderson DL (1994b) Komatiites and picrites: evidence that the ‘plume’ source is depleted. Earth Planet Sci Lett 128:303–311

    Article  Google Scholar 

  • Anderson DL (1998a) The scales of mantle convection. Tectonophysics 284:1–17

    Article  Google Scholar 

  • Anderson DL (1998b) The EDGES of the mantle. In: Gurnis M, Wysession ME, Knittle E, Buffett B (eds) The core-mantle boundary region. American Geophysical Union, Washington, DC, pp 255–271

    Chapter  Google Scholar 

  • Anderson DL (2000) The thermal state of the upper mantle; no role for mantle plumes. Geophys Res Lett 27(22):3623–3626

    Article  Google Scholar 

  • Anderson DL (2001) Top-down tectonics. Science 293:2016–2018

    Article  Google Scholar 

  • Anderson DL (2002a) How many plates? Geology 30:411–414

    Article  Google Scholar 

  • Anderson DL (2002b) Occam’s razor: simplicity, complexity, and global geodynamics. Proc Am Philos Soc 146(1):56–76

    Google Scholar 

  • Anderson DL (2002c) Plate tectonics as a far-from-equilibrium self-organized system. In: Stein S, Freymueller JT (eds) Plate boundary zones. Geophysical monograph, geodynamics series 30. American Geophysical Union, Washington, DC, pp 411–442

    Google Scholar 

  • Anderson DL, Bass JD (1984) Mineralogy and composition of the upper mantle. Geophys Res Lett 11:637–640

    Article  Google Scholar 

  • Anderson DL, Natland JH (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, pp 119–145

    Google Scholar 

  • Anderson DL, Tanimoto T, Zhang YS (1992) Plate tectonics and hotspots: the third dimension. Science 256:1645–1651

    Article  Google Scholar 

  • Arndt NT, Czamanske GK, Wooden JL, Fedorenko VA (1993) Mantle and crustal contributions to continental flood volcanism. Tectonophysics 223:39–52

    Article  Google Scholar 

  • Best WJ, Johnson LR, McEvilly TV (1974) ScS and the mantle beneath Hawaii. Eos Trans Am Geophys Union (Fall Meeting Supplement) 55:1147

    Google Scholar 

  • Bonatti E (1990) Not so hot “hot spots” in the oceanic mantle. Science 250(4977):107–111

    Article  Google Scholar 

  • Burke KC, Wilson JT (1976) Hot spots on the Earth’s surface. J Geophys Res 93:7690–7708

    Google Scholar 

  • Burov E, Guillou-Frottier L (2005) The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys J Int 161:469–490

    Article  Google Scholar 

  • Campbell IH, Davies GF (2006) Do mantle plumes exist? Episodes 29(3):162–168

    Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99:79–93

    Article  Google Scholar 

  • Campbell IH, Griffiths RW (1993) The evolution of the mantle’s chemical structure. Lithos 30:389–399

    Article  Google Scholar 

  • Chauvel C, Hémond C (2000) Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst 1(2):1001

    Article  Google Scholar 

  • Clague DA, Dalrymple GB (1987) The Hawaiian-emperor volcanic chain: Part I, Geologic evolution. In: Decker RW, et al (eds) Volcanism in Hawaii. United States Geological Survey Professional Paper 1350, Reston, Virginia, pp 5–54

    Google Scholar 

  • Cordery MJ, Davies GF, Campbell IH (1997) Genesis of flood basalts from eclogite-bearing mantle plumes. J Geophys Res 102:20179–20197

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock JM (2003) Three distinct type of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Craig H, Lupton J (1976) Primordial Ne, He and H in oceanic basalts. Earth Planet Sci Lett 31:369–385

    Article  Google Scholar 

  • Craig H, Lupton J (1981) Helium-3 and mantle volatiles in the ocean and the oceanic crust. In: Emiliani C (ed) The sea, 7. Wiley, New York, pp 391–428

    Google Scholar 

  • D’Acremont E, Leroy S, Burov EB (2003) Numerical modeling of a mantle plume: the plume head-lithosphere interaction in the formation of an oceanic large igneous province. Earth Planet Sci Lett 206:379–396

    Article  Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 94:1895–1912

    Article  Google Scholar 

  • Elder J (1976) The bowels of the earth. Oxford University Press, London, p 222

    Google Scholar 

  • Farley KA, Nerona E (1998) Noble gases in the Earth’s mantle. Annu Rev Earth Planet Sci 26:189–218

    Article  Google Scholar 

  • Farnetani CG, Samuel H (2005) Beyond the thermal plume paradigm. Geophys Res Lett 32(L07311):4

    Google Scholar 

  • Feighner M, Kellogg L, Travis B (1995) Numerical modeling of chemically buoyant mantle plumes at spreading ridges. Geophys Res Lett 22:715–718

    Article  Google Scholar 

  • Fisk MR, Bence AE, Schilling JG (1982) Major element chemistry of Galapagos rift zone magmas and their phenocrysts. Earth Planet Sci Lett 61(1):171–189

    Article  Google Scholar 

  • Foulger GR, Natland JH, Anderson DL (2005) Genesis of the Iceland melt anomaly by plate tectonic processes. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, pp 595–625

    Google Scholar 

  • Graham DW (2000) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, et al (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:247–317

    Google Scholar 

  • He B, Xu Y-G, Chung S-L, Xiao L, Wang Y (2003) Sedimentary evidence for a rapid crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet Sci Lett 213:389–403

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883

    Article  Google Scholar 

  • Hess HH (1962) A history of ocean basins. In: Engel AEJ et al (eds) Petrologic studies: a volume in honor of A.F. Buddington. Geological Society of America, Boulder, Colorado, pp 599–620

    Google Scholar 

  • Hieronymus CF, Bercovici D (1999) Discrete alternating hotspot islands formed by interaction of magma transport and lithospheric flexure. Nature 397:604–607

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208

    Article  Google Scholar 

  • Hirschmann MM, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts, II: isobaric variations in melts near the solidus and owing to variable source composition. J Petrol 40:297–313

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hofmann AW, Jochum KP (1996) Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. J Geophys Res 101:11831–11839

    Article  Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283(5408):1699–1706

    Article  Google Scholar 

  • Holden JC, Vogt PR (1977) Graphic solutions to problems of plumacy. EOS Trans 56:573–580

    Google Scholar 

  • Holmes A (1944) Principles of physical geology, 1st edn. Thomas Nelson & Sons, London, p 532

    Google Scholar 

  • Ito GT, Lin J (1995) Oceanic spreading center-hotspot interactions; constraints from along isochron bathymetric and gravity anomalies. Geology 23(7):657–660

    Article  Google Scholar 

  • Jackson ED, Shaw HR (1975) Stress fields in central portions of the Pacific plate: delineated in time by linear volcanic chains. J Geophys Res 80:1861–1874

    Article  Google Scholar 

  • Jackson ED, Shaw HR, Bargar KE (1975) Calculated geochronology and stress field orientations along the Hawaiian chain. Earth Planet Sci Lett 26:145–155

    Article  Google Scholar 

  • Kanasewich ER, Gutowski PR (1975) Detailed seismic analysis of a lateral mantle inhomogeneity. Earth Planet Sci Lett 25:379–384

    Article  Google Scholar 

  • Kanasewich ER, Ellis RM, Chapman CH, Gutowski PR (1972) Teleseismic array evidence for inhomogeneities in the lower mantle and the origin of the Hawaiian Islands. Nature 239:99–100

    Article  Google Scholar 

  • Kanasewich ER, Ellis RM, Chapman CH, Gutowski PR (1973) Seismic array evidence of a core boundary source for the Hawaiian linear volcanic chain. J Geophys Res 78:1361–1371

    Article  Google Scholar 

  • Kane KA, Hayes DE (1994) A new relationship between subsidence rate and zero-age depth. J Geophys Res 99(11):21759–21777

    Article  Google Scholar 

  • Katzman R, Zhao L, Jordan TH (1998) High-resolution, two-dimensional vertical tomography of the central Pacific using ScS reverberations and frequency-dependent travel times. J Geophys Res 103:17933–17971

    Article  Google Scholar 

  • Kaula WM (1983) Minimal upper mantle temperature variations consistent with observed heat flow and plate velocities. J Geophys Res 88:10323–10332

    Article  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Article  Google Scholar 

  • Langmuir CM, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Phipps Morgan J et al (eds) Mantle flow and melt generation at mid-ocean ridges. American Geophysical Union Geophysical Monograph 71, Washington, DC, pp 183–280

    Google Scholar 

  • Larsen T, Yuen D (1997) Fast plumeheads. Geophys Res Lett 24:1995–1998

    Article  Google Scholar 

  • Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164:483–496

    Article  Google Scholar 

  • Lowman JP, Jarvis GT (1999) Effects of mantle heat source distribution on supercontinent stability. J Geophys Res 104(6):12733–12747

    Article  Google Scholar 

  • Malamud BD, Turcotte DL (1999) How many plumes are there? Earth Planet Sci Lett 174:113–124

    Article  Google Scholar 

  • McKenzie D, Bickle J (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Article  Google Scholar 

  • Meibom A, Anderson DL (2004) The statistical upper mantle assemblage. Earth Planet Sci Lett 217:123–139

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343

    Article  Google Scholar 

  • Morgan WJ (1971) Convective plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Morgan WJ (1972a) Deep mantle convection plumes and plate motions. Bull Am Assoc Petrol Geol 56:203–213

    Google Scholar 

  • Morgan WJ (1972b) Plate motions and deep mantle convection. In: Shagam R et al (eds) Studies in Earth and space sciences: a volume in honor of Harry Hammond Hess. Boulder, Colorado, Geological Society of America Memoir 132, pp 7–22

    Google Scholar 

  • Nataf H-C (2000) Seismic imaging of mantle plumes. Ann Rev Earth Planet Sci 28:391–417

    Article  Google Scholar 

  • Natland JH, Winterer EL (2005) Fissure control on volcanic action in the Pacific. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, pp 687–710

    Google Scholar 

  • Parmentier EM, Morgan JP (1990) Spreading rate dependence of three-dimensional structure in oceanic spreading centres. Nature 348:325–328

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003a) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral melt-partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003b) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108:17

    Article  Google Scholar 

  • Phipps Morgan J (1997) The generation of a compositional lithosphere by midocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet Sci Lett 146:213–232

    Article  Google Scholar 

  • Plank T, Langmuir CH (1992) Effects of melting regime on the composition of the oceanic crust. J Geophys Res 97:19749–19770

    Article  Google Scholar 

  • Presnall DC, Gudfinnsson GH (2005) Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, pp 207–216

    Google Scholar 

  • Presnall DC, Helsley CE (1982) Diapirism of depleted peridotite: a model for the origin of hot spots. Phys Earth Planet Inter 29:148–160

    Article  Google Scholar 

  • Presnall DC, Gudfinnsson GH, Walter MJ (2002) Generation of midocean ridge basalts at pressures from 1 to 7 GPa. Geochim Cosmochim Acta 66:2073–2090

    Article  Google Scholar 

  • Ramberg H (1981) Gravity, deformation and the Earth’s crust, 2nd edn. Academic Press, London, p 452

    Google Scholar 

  • Ribe NM, Christensen UR, Theiβing J (1995) The dynamics of plume-ridge interactions; ridge-centered plumes. Earth Planet Sci Lett 134(1–2):155–168

    Article  Google Scholar 

  • Richter FM (1973) Dynamic models for sea floor spreading. Rev Geophys 11:223–287

    Article  Google Scholar 

  • Richter FM, Parsons B (1975) On the interaction of two scales of convection in the mantle. J Geophys Res 80:2529–2541

    Article  Google Scholar 

  • Ritsema J, Allen RM (2003) The elusive mantle plume. Earth Planet Sci Lett 207:1–12

    Article  Google Scholar 

  • Ritsema JH, van Heijst J (2000) Seismic imaging of structural heterogeneity in Earth’s mantle: evidence for large-scale mantle flow. Sci Prog 83:243

    Google Scholar 

  • Rowley DB (2002) Rate of plate creation and destruction: 180 Ma to present. Geol Soc Am Bull 114:927–933

    Article  Google Scholar 

  • Salters VJM, Dick BJB (2002) Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418:68–72

    Article  Google Scholar 

  • Saunders AD, Jones SM, Morgan LA, Pierce KL, Widdowson M, Xu YG (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem Geol 241:282–318

    Article  Google Scholar 

  • Schilling JG (1973a) Iceland mantle plume: geochemical study of Reykjanes ridge. Nature 242:565–571

    Article  Google Scholar 

  • Schilling JG (1973b) Mantle plume–spreading ridge system: geochemical evidence. Eos Trans Am Geophys Union 54:243

    Google Scholar 

  • Seth HC (1999) Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy. Tectonophysics 311:1–29

    Article  Google Scholar 

  • Seth HC (2003) Beyond the plume hypothesis. Curr Sci 85(11):1518–1520

    Google Scholar 

  • Shaw HR, Jackson ED (1973) Linear island chains in the Pacific: result of thermal plumes or gravitational anchors? J Geophys Res 78:8634–8652

    Article  Google Scholar 

  • Shaw HR, Jackson ED, Bargar KE (1980) Volcanic periodicity along the Hawaiian-emperor chain. Am J Sci 280A (Jackson volume): 667–708

    Google Scholar 

  • Shen Y, Forsyth DW (1992) The effects of temperature- and pressure-dependent viscosity on three-dimensional passive flow of the mantle beneath a ridge-transform system. J Geophys Res 97(B13):19717–19728

    Article  Google Scholar 

  • Sipkin SA, Jordan TH (1975) Lateral heterogeneity of the upper mantle determined from the travel times of ScS. J Geophys Res 80:1474–1484

    Article  Google Scholar 

  • Stolper EM, Walker D (1980) Melt density and the average composition of basalt. Contrib Mineral Petrol 74:7–12

    Article  Google Scholar 

  • Tackley P (1998) Three dimensional simulations of mantle convection with a thermo-chemical basal boundary layer. In: Gurnis M, et al (eds) The core mantle boundary region. American Geophysical Union, Washington, DC, Geodynamics Series 28, pp 231–353

    Google Scholar 

  • Tozer DC (1973) Thermal plumes in the Earth’s mantle. Nature 244:398–400

    Article  Google Scholar 

  • Turcotte DL, Oxburgh ER (1973) Mid-plate tectonics. Nature 244:337–339

    Article  Google Scholar 

  • von Herzen RP, Cordery MJ, Detrick RS, Fang C (1989) Heat-flow and the thermal origin of hot spot swells: the Hawaiian swell revisited. J Geophys Res 94:13783–13799

    Article  Google Scholar 

  • Weaver B (1991) Trace element evidence for the origin of ocean-island basalt. Geology 19:123–126

    Article  Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Phys 41:863–870

    Article  Google Scholar 

  • Woods M, Okal E (1996) Rayleigh-wave dispersion along the Hawaiian swell: a test of lithospheric thinning by thermal rejuvenation at a hot spot. Geophys J Int 125:325–339

    Article  Google Scholar 

  • Wright C (1975) Comments on “Seismic array evidence of a core boundary source for the Hawaiian linear volcanic chain” by E.R. Kanasewich et al. J Geophys Res 80:1915–1919

    Google Scholar 

  • Yaxley GM (2000) Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implication for the petrogenesis of flood basalts. Contrib Miner Petrol 139:326–338

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Choudhuri, M., Nemčok, M. (2017). The Great Plume Debate. In: Mantle Plumes and Their Effects. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-44239-6_7

Download citation

Publish with us

Policies and ethics