Skip to main content

Dark Matter + Higgs(\(\rightarrow b\bar{b}\)): Physics Objects

  • Chapter
  • First Online:
  • 300 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter describes the physics objects used in this analysis, including the lists of samples from data and simulated background processes, and the physical and kinematic variables constructed that are used to identify the events and separate background from signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Proton–proton collision vertices are reconstructed requiring that at least five tracks withp T  > 0. 5 GeV are associated with a given vertex.

References

  1. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun.178, 852–867 (2008)

    Google Scholar 

  2. ATLAS Collaboration, The ATLAS Simulation Infrastructure. Eur. Phys. J.C70, 823–874 (2010)

    Google Scholar 

  3. S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Meth.A506, 250–303 (2003)

    Article  ADS  Google Scholar 

  4. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. (ATL-PHYS-PUB-2010-013) (2010)

    Google Scholar 

  5. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. J. High Energy Phys.2, 007 (2009)

    Google Scholar 

  6. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.P. Yuan, New parton distributions for collider physics. Phys. Rev.D82, 074024 (2010)

    ADS  Google Scholar 

  7. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys.06, 043 (2010)

    Article  ADS  MATH  Google Scholar 

  8. P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev.D82, 074018 (2010)

    ADS  Google Scholar 

  9. S. Frixione, B.R. Webber, The MC@NLO 3.3 Event generator (2006)

    Google Scholar 

  10. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys.06, 029 (2002)

    Article  ADS  Google Scholar 

  11. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. J. High Energy Phys.03, 092 (2006)

    Article  ADS  Google Scholar 

  12. J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys.C72, 637–646 (1996)

    ADS  Google Scholar 

  13. B.P. Kersevan et al., The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun.184, 919–985 (2013)

    Google Scholar 

  14. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys.7, 029 (2008)

    Article  ADS  Google Scholar 

  15. M. Cacciari, M. Czakon, M. Mangano, A. Mitov, P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett.B710, 612–622 (2012)

    Article  ADS  Google Scholar 

  16. M. Beneke, P. Falgari, S. Klein, C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys.B855, 695–741 (2012)

    Article  ADS  MATH  Google Scholar 

  17. P. Baernreuther, M. Czakon, A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to\(q\bar{q} \rightarrow t\bar{t} + X\). Phys. Rev. Lett.109, 132001 (2012)

    Article  ADS  Google Scholar 

  18. M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. J. High Energy Phys.01, 080 (2013)

    Article  ADS  Google Scholar 

  19. M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. J. High Energy Phys.12, 054 (2012)

    Article  ADS  Google Scholar 

  20. M. Czakon, P. Fiedler, A. Mitov, The total top quark pair production cross-section at hadron colliders through O(α S 4). Phys. Rev. Lett.110, 252004 (2013)

    Article  ADS  Google Scholar 

  21. M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun.185, 2930 (2014)

    Article  ADS  Google Scholar 

  22. M. Botje et al., The PDF4LHC working group interim recommendations. (2011)

    Google Scholar 

  23. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J.C63, 189–285 (2009)

    Article  ADS  Google Scholar 

  24. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J.C64, 653–680 (2009)

    Article  ADS  Google Scholar 

  25. J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.P. Yuan, CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev.D89, 033009 (2014)

    ADS  Google Scholar 

  26. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys.B867, 244–289 (2013)

    Article  ADS  Google Scholar 

  27. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys.01, 010 (2001)

    Article  ADS  Google Scholar 

  28. J.M. Campbell, R.K. Ellis, MCFM for the tevatron and the LHC. Nucl. Phys. Proc. Suppl.205–206, 10–15 (2010)

    Article  Google Scholar 

  29. T. Han S. Willenbrock, QCD correction to the p p —¿ W H and Z H total cross-sections. Phys. Lett.B273, 167–172 (1991)

    Article  ADS  Google Scholar 

  30. O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-Strahlung processes at hadron colliders. Phys. Lett.B579, 149–156 (2004)

    Article  ADS  Google Scholar 

  31. M.L. Ciccolini, S. Dittmaier, M. Kramer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders. Phys. Rev.D68, 073003 (2003)

    ADS  Google Scholar 

  32. D. Casadei et al., The implementation of the ATLAS missing Et triggers for the initial LHC operation. Technical Report ATL-DAQ-PUB-2011-00, CERN, Geneva (2011)

    Google Scholar 

  33. T. Barillari, E.B. Kuutmann, T. Carli, J. Erdmann, P. Giovannini, K.J. Grahn, C. Issever, A. Jantsch, A. Kiryunin, K. Lohwasser, A. Maslennikov, S. Menke, H. Oberlack, G. Pospelov, E. Rauter, P. Schacht, F. Spanó, P. Speckmayer, P. Stavina, P. Strízenec, Local hadronic calibration. Technical Report ATL-LARG-PUB-2009-001-2. ATL-COM-LARG-2008-006. ATL-LARG-PUB-2009-001, CERN, Geneva (2008). Due to a report-number conflict with another document, the report-number ATL-LARG-PUB-2009-001-2 has been assigned.

    Google Scholar 

  34. ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at\(\sqrt{s} = 8\,\mathrm{TeV}\) with the ATLAS detector. Eur. Phys. J.C75, 299 (2015)

    Google Scholar 

  35. ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. Eur. Phys. J.C74, 3130 (2014)

    Google Scholar 

  36. W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma, S. Menke, S. Rajagopalan, D. Rousseau, S. Snyder, G. Unal, Calorimeter clustering algorithms: description and performance. Technical Report ATL-LARG-PUB-2008-002. ATL-COM-LARG-2008-003, CERN, Geneva (2008)

    Google Scholar 

  37. Jet energy scale and its systematic uncertainty in proton-proton collisions at sqrt(s)=7 TeV in ATLAS 2010 data, Technical Report ATLAS-CONF-2011-032, CERN, Geneva (2011)

    Google Scholar 

  38. In-situ jet energy scale and jet shape corrections for multiple interactions in the first ATLAS data at the LHC, Technical Report ATLAS-CONF-2011-030, CERN, Geneva (2011)

    Google Scholar 

  39. Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, Technical Report ATLAS-CONF-2011-102, CERN, Geneva (2011)

    Google Scholar 

  40. C. Anastopoulos, E. Benhar-Noccioli, A. Bocci, K. Brendlinger, F. Bührer, L. Iconomidou-Fayard, M. Delmastro, O. Ducu, R. Fletcher, D. Froidevaux, T. Guillemin, S. Heim, F. Hubaut, M. Karnevskiy, J. Kretzschmar, J. Kroll, C. Lester, K. Lohwasser, J.B. Maurer, A. Morley, G. Pásztor, E. Richter-Was, A. Schaffer, T. Serre, P. Sommer, E. Tiouchichine, H. Williams, Supporting document on electron efficiency measurements using the 2012 LHC proton-proton collision data. Technical Report ATL-COM-PHYS-2013-1295, CERN, Geneva (2013)

    Google Scholar 

  41. ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J.C74, 3071 (2014)

    Google Scholar 

  42. ATLAS Collaboration, Preliminary results on the muon reconstruction efficiency, momentum resolution, and momentum scale in ATLAS 2012 pp collision data. Technical Report ATLAS-CONF-2013-088, CERN, Geneva (2013)

    Google Scholar 

  43. ATLAS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS. Eur. Phys. J.C72, 1844 (2012)

    Google Scholar 

  44. Performance of Missing Transverse Momentum Reconstruction in ATLAS studied in Proton-Proton Collisions recorded in 2012 at 8 TeV. Technical Report ATLAS-CONF-2013-082, CERN, Geneva (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, Y. (2017). Dark Matter + Higgs(\(\rightarrow b\bar{b}\)): Physics Objects. In: Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Bottom Quarks at ATLAS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44218-1_8

Download citation

Publish with us

Policies and ethics