Duco - Hybrid Indoor Navigation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9847)


This paper proposes an application especially designed for indoor navigation, Duco. A hybrid approach at trying to find a solution to the problem of indoor navigation by mainly utilising pedestrian dead-reckoning (PDR) along with the aid of iOS wireless location determination systems to aid the process. Using merely the digital accelerometer and compass sensors of modern smartphones, PDR can reflect location changes in real-time with high-precision while retaining battery life at maximum. An algorithm is utilised to analyse the data from these noisy sensors to enable high success rate of detecting step count. Duco also makes use of wireless location determination systems to retrieve the initial location where PDR falls short or iBeacons to get around problematic places inside an indoor venue like stairs, elevators or signal dead-zones.


Indoor navigation Positioning Pedestrian dead-reckoning Smartphone inertial sensor iBeacon CoreLocation 


  1. 1.
    Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (iON gNSS+2014) (2014)Google Scholar
  2. 2.
    Liu, J., Chen, R., Pei, L., Chen, W., Tenhunen, T., Kuusniemi, H., Kroger, T., Chen, Y.: Accelerometer assisted robust wireless signal positioning based on a hidden Markov model. In: Proceedings of IEEE/ION PLANS, pp. 488–497 (2010)Google Scholar
  3. 3.
    Jung, S.-H., Lee, S., Han, D.: A crowdsourcing-based global indoor positioning and navigation system. Pervasive and Mobile Computing (2016)Google Scholar
  4. 4.
    Altintas, B., Serif, T.: Improving RSS-based indoor positioning algorithm via k-means clustering. In: European Wireless, 27–29 April 2011, Vienna, Austria (2011)Google Scholar
  5. 5.
    Altintas, B., Serif, T.: Indoor location detection with a RSS-based short term memory technique (KNN-STM). In: Tenth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom, 19–23 March 2012, Lugano, Switzerland, Workshop Proceedings, pp. 794–798 (2012)Google Scholar
  6. 6.
    Pei, L., Liu, J., Guinness, R., Chen, Y., Kröger, T., Chen, R., Chen, L.: The evaluation of WIFI positioning in a bluetooth and WIFI coexistence environment. In: Ubiquitous Positioning, Indoor Navigation, and Location Based Service (uPINLBS), 2012, pp. 1–6. IEEE (2012)Google Scholar
  7. 7.
    Mannings, R.: Ubiquitous Positioning. Artech House, Norwood (2008)Google Scholar
  8. 8.
    Yao, D., Yu, C., Dey, A.K., Koehler, C., Min, G., Yang, L.T., Jin, H.: Energy efficient indoor tracking on smartphones. Future Generation Comput. Syst. 39, 44–54 (2014)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37, 1067–1080 (2007)CrossRefGoogle Scholar
  10. 10.
    Evrendilek, C., Akcan, H.: On the complexity of trilateration with noisy range measurements. IEEE Commun. Lett. 15, 1097–1099 (2011)CrossRefGoogle Scholar
  11. 11.
    Brain, M., Harris, T.: How GPS receivers work (2011)Google Scholar
  12. 12.
    Galván-Tejada, C.E., Carrasco-Jiménez, J.C., Brena, R.F.: Bluetooth-WiFi based combined positioning algorithm, implementation and experimental evaluation. Proc. Technol. 7, 37–45 (2013)CrossRefGoogle Scholar
  13. 13.
    Bekkelien, A., Deriaz, M., Marchand-Maillet, S.: Bluetooth indoor positioning. Master’s thesis, University of Geneva (2012)Google Scholar
  14. 14.
    Nebot, E.: Sensors used for autonomous navigation. In: Tzafestas, S.G. (ed.) Advances in Intelligent Autonomous Systems, pp. 135–156. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Constandache, I., Choudhury, R.R., Rhee, I.: Towards mobile phone localization without war-driving. In: 2010 Proceedings of IEEE INFOCOM, pp. 1–9. IEEE (2010)Google Scholar
  17. 17.
    Link, J.A.B., Smith, P., Viol, N., Wehrle, K.: FootPath: accurate map-based indoor navigation using smartphones. In: IPIN, pp. 1–8. Citeseer (2011)Google Scholar
  18. 18.
    Wikipedia: List of online map services.
  19. 19.
    Google: Indoor maps availability. 827?hl=en
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Yeditepe UniversityAtaşehirTurkey

Personalised recommendations