Skip to main content

Duco - Hybrid Indoor Navigation

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9847)


This paper proposes an application especially designed for indoor navigation, Duco. A hybrid approach at trying to find a solution to the problem of indoor navigation by mainly utilising pedestrian dead-reckoning (PDR) along with the aid of iOS wireless location determination systems to aid the process. Using merely the digital accelerometer and compass sensors of modern smartphones, PDR can reflect location changes in real-time with high-precision while retaining battery life at maximum. An algorithm is utilised to analyse the data from these noisy sensors to enable high success rate of detecting step count. Duco also makes use of wireless location determination systems to retrieve the initial location where PDR falls short or iBeacons to get around problematic places inside an indoor venue like stairs, elevators or signal dead-zones.


  • Indoor navigation
  • Positioning
  • Pedestrian dead-reckoning
  • Smartphone inertial sensor
  • iBeacon
  • CoreLocation

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44215-0_21
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-44215-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (iON gNSS+2014) (2014)

    Google Scholar 

  2. Liu, J., Chen, R., Pei, L., Chen, W., Tenhunen, T., Kuusniemi, H., Kroger, T., Chen, Y.: Accelerometer assisted robust wireless signal positioning based on a hidden Markov model. In: Proceedings of IEEE/ION PLANS, pp. 488–497 (2010)

    Google Scholar 

  3. Jung, S.-H., Lee, S., Han, D.: A crowdsourcing-based global indoor positioning and navigation system. Pervasive and Mobile Computing (2016)

    Google Scholar 

  4. Altintas, B., Serif, T.: Improving RSS-based indoor positioning algorithm via k-means clustering. In: European Wireless, 27–29 April 2011, Vienna, Austria (2011)

    Google Scholar 

  5. Altintas, B., Serif, T.: Indoor location detection with a RSS-based short term memory technique (KNN-STM). In: Tenth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom, 19–23 March 2012, Lugano, Switzerland, Workshop Proceedings, pp. 794–798 (2012)

    Google Scholar 

  6. Pei, L., Liu, J., Guinness, R., Chen, Y., Kröger, T., Chen, R., Chen, L.: The evaluation of WIFI positioning in a bluetooth and WIFI coexistence environment. In: Ubiquitous Positioning, Indoor Navigation, and Location Based Service (uPINLBS), 2012, pp. 1–6. IEEE (2012)

    Google Scholar 

  7. Mannings, R.: Ubiquitous Positioning. Artech House, Norwood (2008)

    Google Scholar 

  8. Yao, D., Yu, C., Dey, A.K., Koehler, C., Min, G., Yang, L.T., Jin, H.: Energy efficient indoor tracking on smartphones. Future Generation Comput. Syst. 39, 44–54 (2014)

    CrossRef  Google Scholar 

  9. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37, 1067–1080 (2007)

    CrossRef  Google Scholar 

  10. Evrendilek, C., Akcan, H.: On the complexity of trilateration with noisy range measurements. IEEE Commun. Lett. 15, 1097–1099 (2011)

    CrossRef  Google Scholar 

  11. Brain, M., Harris, T.: How GPS receivers work (2011)

    Google Scholar 

  12. Galván-Tejada, C.E., Carrasco-Jiménez, J.C., Brena, R.F.: Bluetooth-WiFi based combined positioning algorithm, implementation and experimental evaluation. Proc. Technol. 7, 37–45 (2013)

    CrossRef  Google Scholar 

  13. Bekkelien, A., Deriaz, M., Marchand-Maillet, S.: Bluetooth indoor positioning. Master’s thesis, University of Geneva (2012)

    Google Scholar 

  14. Nebot, E.: Sensors used for autonomous navigation. In: Tzafestas, S.G. (ed.) Advances in Intelligent Autonomous Systems, pp. 135–156. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  15. Wikipedia: Dead reckoning.

  16. Constandache, I., Choudhury, R.R., Rhee, I.: Towards mobile phone localization without war-driving. In: 2010 Proceedings of IEEE INFOCOM, pp. 1–9. IEEE (2010)

    Google Scholar 

  17. Link, J.A.B., Smith, P., Viol, N., Wehrle, K.: FootPath: accurate map-based indoor navigation using smartphones. In: IPIN, pp. 1–8. Citeseer (2011)

    Google Scholar 

  18. Wikipedia: List of online map services.

  19. Google: Indoor maps availability. 827?hl=en

  20. OpenStreetMap: Indoor mapping.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Can Surmeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Surmeli, C., Serif, T. (2016). Duco - Hybrid Indoor Navigation. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh, D. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2016. Lecture Notes in Computer Science(), vol 9847. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44214-3

  • Online ISBN: 978-3-319-44215-0

  • eBook Packages: Computer ScienceComputer Science (R0)