Skip to main content

Mining Multiplex Structural Patterns from Complex Networks

  • Chapter
  • First Online:
Wisdom Web of Things

Abstract

Wisdom Web of Things (W2T) can be modeled and studied from the perspective of complex networks. The complex network perspective aims to model and characterize complex systems that consist of multiple and interdependent components. Among the studies on complex networks, topological structure analysis is of the most fundamental importance, as it represents a natural route to understand the dynamics, as well as to synthesize or optimize the functions, of networks. A broad spectrum of network structural patterns have been respectively reported in the past decade, such as communities, multipartites, hubs, authorities, outliers, bow ties, and others. In this chapter, we show that many real-world networks demonstrate multiplex structure patterns. A multitude of known or even unknown (hidden) patterns can simultaneously exist in the same network, and moreover they may be overlapped and nested with each other to collaboratively form a heterogeneous, nested or hierarchical organization, in which different connective phenomena can be observed at different granular levels. In addition, we show that such patterns hidden in exploratory networks can be well defined as well as effectively recognized within an unified framework consisting of a set of proposed concepts, models, and algorithms. Our findings provide a strong evidence that many real-world complex systems are driven by a combination of heterogeneous mechanisms that may collaboratively shape their ubiquitous multiplex structures as we currently observe. This work also contributes a mathematical tool for analyzing different sources of networks from a new perspective of unveiling multiplex structure patterns, which will be beneficial to Wisdom Web of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Yang, J. Liu, D. Liu, Characterizing and extracting multiplex patterns in complex networks. IEEE Trans. Syst. Man Cybernet. (Part B—Cybernetics) 42(2), 469–481 (2012)

    Article  Google Scholar 

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. R. Milo, S.S. Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  4. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  6. A.L. Barabasi, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  8. P. Holme, F. Liljeros, C.R. Edling, B.J. Kim, Network bipartivity. Phys. Rev. E. 68, 056107 (2003)

    Article  Google Scholar 

  9. J.L. Guillaume, M. Latapy, Bipartite structure of all complex networks. Inform. Process. Lett. 90, 215–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Brady, K. Maxwell, N. Daniels, L.J. Cowen, Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways. PLoS ONE 4, e5364 (2009)

    Article  Google Scholar 

  11. J.M. Kleinberg, Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Albert, H. Jeong, A.L. Barabasi, The internet’s achilles heel: error and attack tolerance of complex netowrks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  13. O. Sporns, C. Honey, R. Kotter, Identification and classification of hubs in brain networks. PLoS ONE 2(10), e1049 (2007)

    Article  Google Scholar 

  14. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web. Comput. Netw. 33, 309–320 (1999)

    Google Scholar 

  15. News Feature, The web is a bow tie. Nature 405, 113 (2000)

    Article  Google Scholar 

  16. H.W. Ma, A.P. Zeng, The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430 (2003)

    Article  Google Scholar 

  17. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structures of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  18. D.E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing (Addison-Wesley press, Reading, MA, 1993)

    MATH  Google Scholar 

  19. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabasi, Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2004)

    Article  Google Scholar 

  20. C. Zhou, L. Zemanova, G. Zamora, C.C. Hilgetag, J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006)

    Article  Google Scholar 

  21. M.S. Pardo, R. Guimera, A.A. Moreira, L.A.N. Amaral, Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA 104, 7821–7826 (2007)

    Article  Google Scholar 

  22. A. Clauset, C. Moore, M.E.J. Newman, Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  Google Scholar 

  23. C. Kemp, J.B. Tenenbaum, The discovery of structural form. Proc. Natl. Acad. Sci. USA 105, 10687–10692 (2008)

    Article  Google Scholar 

  24. F. Lorrain, H.C. White, Structural equivalence of individuals in social networks. J. Math. Sociol. 1, 49–80 (1971)

    Article  Google Scholar 

  25. D.R. White, K.P. Reitz, Graph and semigroup homomorphism on networks of relations. Soc. Netw. 5, 193–235 (1983)

    Article  MathSciNet  Google Scholar 

  26. S.E. Fienberg, S. Wasserman, Categorical data analysis of single sociometric relations. Sociol. Methodol. 12, 156–192 (1983)

    Article  Google Scholar 

  27. P.W. Holland, K.B. Laskey, S. Leinhardt, Stochastic blockmodels: some first steps. Soc. Netw. 5, 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  28. M.E.J. Newman, E.A. Leicht, Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)

    Article  MATH  Google Scholar 

  29. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B. 39, 185–197 (1977)

    Google Scholar 

  30. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

    MATH  Google Scholar 

  31. W.D. Nooy, A. Mirvar, V. Batagelj, Exploratory Social Network Analysis with Pajeck (Cambridge University Press, 2004)

    Google Scholar 

  32. D.A. Smith, D.R. White, Structure and dynamics of the global economy—network analysis of international-trade 1965–1980. Soc. Forces 70, 857–893 (1992)

    Article  Google Scholar 

  33. M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E. 74, 036104 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This chapter is based on the authors’ work published in [1], with further extended materials on detailed theoretical analysis as well as additional experimental results.

This work was supported in part by National Natural Science Foundation of China under grants 61373053 and 61572226, Program for New Century Excellent Talents in University under grant NCET-11-0204, Jilin Province Natural Science Foundation under grants 20150101052JC, and Hong Kong Research Grants Council under grant RGC/HKBU211212 and HKBU12202415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Liu .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition 1

For an indirected network, its feedforward-coupling matrix is equal to its feedback-coupling matrix, i.e., we have: \(P=Q\).

Proof

\(p_{ij}=P(i\rightarrow j|y=k)\)

\(=\sum _{k=1}^K m_{ik}P(i\rightarrow j|y=k)\)

\(=\sum _{k=1}^K (\sum _{l=1}^L b_{il}z_{lk})P(i\rightarrow j|y=k)\)

\(= \sum _{l=1}^L \sum _{k=1}^K b_{il}z_{lk}\theta _{kj}\)

where \(i\rightarrow j\) denote the event that node \(v_i\) couples with \(v_j\), and \(y=k\) denote the event that \(v_i\) is labeled by cluster k; \(m_{ik}=1\) if \(v_i\) is labeled by cluster k, otherwise \(m_{ik}=0\). So we have:

\(P=B_gZ\varTheta .\)

\(q_{ij}=P(i\dashleftarrow j|y=k)\)

\(=\sum _{k=1}^K m_{ik}P(i\dashleftarrow j|y=k)\)

\(=\sum _{k=1}^K (\sum _{l=1}^L b_{il}z_{lk})P(i\dashleftarrow j|y=k)\)

\(= \sum _{l=1}^L \sum _{k=1}^K b_{il}z_{lk}\delta _{kj}\)

where \(i\dashleftarrow j\) denote the event that node \(v_i\) except to be coupled by \(v_j\). So we have:

\(Q=B_gZ\varDelta \).

If A is symmetry, from the Eq. 12.4 in the chapter, we have

\(\theta _{kj}=\frac{\sum _{l=1}^L\sum _{b_{il}\ne 0} a_{ij}\gamma _{lk}}{\sum _{l=1}^L\sum _{b_{il}\ne 0}\gamma _{lk}}= \frac{\sum _{l=1}^L\sum _{b_{il}\ne 0} a_{ji}\gamma _{lk}}{\sum _{l=1}^L\sum _{b_{il}\ne 0}\gamma _{lk}}=\delta _{kj}\).

So we have \(P=Q\).\(\square \)

Proposition 2

$$\begin{aligned} L(N|X,B_g)=\sum _{l=1}^L\sum _{b_{il}\ne 0}\ln \sum _{k=1}^K \varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji})\omega _k \end{aligned}$$
(12.10)

where \(f(x,y)=x^y(1-x)^{1-y}\).

Proof

Let \(v=i\) denote the event that a node with linkage structure \(<a_{i1},\cdots ,a_{in},a_{1i},\cdots ,a_{ni}>\) will be observed in network N. Let \(y=k\) denote the event that the cluster label assigned to a node is equal to k. Let \(i\rightarrow _{a_{ij}} j\) denote the event that node \(v_i\) link to node \(v_j\) or not depending on \(a_{ij}\). Let \(i\leftarrow _{a_{ji}} j\) denote the event that node \(v_i\) will be linked by node \(v_j\) or not depending on \(a_{ji}\). We have:

\(L(N|X,B_g)=\ln \varPi _{i=1}^nP(v=i)=\sum _{i=1}^n\ln P(v=i)\)

\(=\sum _{i=1}^n\ln P((v=i) \cap (\cup _{k=1}^Ky=k))\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K P(v=i,y=k)\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K (P(v=i|y=k)P(y=k))\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K (P(<a_{i1},\cdots ,a_{in},a_{1i},\cdots ,a_{ni}>|y=k)P(y=k))\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K (\varPi _{j=1}^n P(i\rightarrow _{a_{ij}} j|y=k)P(i\leftarrow _{a_{ji}} j|y=k)P(y=k))\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K (\varPi _{j=1}^n (\theta _{kj}^{a_{ij}}(1-\theta _{kj})^{1-a_{ij}})(\delta _{kj}^{a_{ji}}(1-\delta _{kj})^{1-a_{ji}})\omega _k)\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K (\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji})\omega _k)\)

\(=\sum _{l=1}^L\sum _{b_{il}\ne 0}\ln \sum _{k=1}^K (\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji})\omega _k)\) \(\square \)

Proposition 3

$$\begin{aligned} L(N,Z|X,B_g)= \sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K z_{lk}(\sum _{j=1}^n (\ln f(\theta _{kj},a_{ij}) \nonumber \\ +\ln f(\delta _{kj},a_{ji}))+\ln \omega _k) \end{aligned}$$
(12.11)

Proof

Let y(i) denote the cluster label assigned to node i under the given partition Z, we have:

\(L(N,Z|X,B_g)\)

\(=\ln \varPi _{i=1}^n P(v=i,y=y(i))\)

\(=\sum _{i=1}^n \ln \sum _{k=1}^K m_{ik}P(v=i,y=k)\)

\(=\sum _{i=1}^n\ln \sum _{k=1}^K m_{ik}P(v=i|y=k)P(y=k)\)

\(=\sum _{i=1}^n\sum _{k=1}^K \ln (P(v=i|y=k)P(y=k))^{m_{ik}}\)

\(=\sum _{i=1}^n\sum _{k=1}^K m_{ik}\ln (P(v=i|y=k)P(y=k))\)

\(=\sum _{i=1}^n \sum _{k=1}^K m_{ik}\ln (\varPi _{j=1}^n (\theta _{kj}^{a_{ij}}(1-\theta _{kj}^{1-a_{ij}})\delta _{kj}^{a_{ji}}(1-\delta _{kj}^{1-a_{ji}}))\omega _k\)

\(=\sum _{i=1}^n\sum _{k=1}^K m_{ik}(\sum _{j=1}^n(\ln f(\theta _{kj},a_{ij})+ \ln f(\delta _{kj},a_{ji}))+\ln \omega _k)\)

\(=\sum _{b_{i1\ne 0}}\sum _{k=1}^K z_{1k}(\sum _{j=1}^n(\ln f(\theta _{kj},a_{ij})+ \ln f(\delta _{kj},a_{ji}))+\ln \omega _k)+\cdots \)

\(+\sum _{b_{iL\ne 0}}\sum _{k=1}^K z_{Lk}(\sum _{j=1}^n(\ln f(\theta _{kj},a_{ij})+ \ln f(\delta _{kj},a_{ji}))+\ln \omega _k)\)

\(=\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K z_{lk}(\sum _{j=1}^n(\ln f(\theta _{kj},a_{ij})+ \ln f(\delta _{kj},a_{ji}))+\ln \omega _k)\).\(\square \)

Notice that, in the proofs of Propositions 2–3, all probabilities such as \(P(y=k|v=i)\) and \(P(y=k)\) are discussed under the conditions of X and \(B_g\). To simplify the equations, we omit them without losing correctness.

Proposition 4

$$\begin{aligned} \gamma _{lk}=\frac{1}{\sum _{i=1}^n b_{il}}\sum _{b_{il}\ne 0}\frac{\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji}) \omega _k}{\sum _{k=1}^K \varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji}) \omega _k} \end{aligned}$$
(12.12)

Proof

let \(P(y=k|v=i)\) be the probability that node i belongs to cluster k given X and \(B_g\). We have:

\(\gamma _{lk}=P(y=k|b=l,X,B_g)\)

\(= \sum _{b_{il}\ne 0}\frac{1}{\sum _{i=1}^n b_{il}}P(y=k|v=i)\)

where \(\frac{1}{\sum _{i=1}^n b_{il}}\) is the probability of selecting node i from block l.

According to the Bayesian theorem, we have:

\(P(y=k|v=i)=\frac{P(y=k)P(v=i|y=k)}{\sum _{k=1}^K P(y=k)P(v=i|y=k)}\).

Based on the proof of Proposition 1, we have:

\(P(y=k)P(v=i|y=k)=\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji}) \omega _k\).

So, we have Eq. 12.12.\(\square \)

As an approximate version of Eq. 12.12, we have:

$$\begin{aligned} \gamma _{lk}=P(y=k|b=l)=P(y=k|v=i,b_{il}\ne 0 )\nonumber \\ =\frac{P(y=k)P(v=i,b_{il}\ne 0|y=k)}{\sum _{k=1}^K P(y=k)P(v=i,b_{il}\ne 0|y=k)}\,\,\,\nonumber \\ =\frac{\exists _{b_{il}\ne 0}\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji}) \omega _k}{\sum _{k=1}^K \exists _{b_{il}\ne 0}\varPi _{j=1}^n f(\theta _{kj},a_{ij})f(\delta _{kj},a_{ji}) \omega _k} \end{aligned}$$
(12.13)

where \(\exists _{b_{il}\ne 0}\) denotes that randomly selecting a node from block l.

That is, instead of averaging all nodes in the block l, the real value of \(\gamma _{lk}\) can be approximately estimated by a randomly selected node from block l.

Correspondingly, an approximate version of the log-likelihood of Eq. 12.10 is given by:

$$\begin{aligned} L(N|X,B_g)=\sum _{l=1}^L N_l(\exists _{b_{il}\ne 0}\ln \sum _{k=1}^K \varPi _{j=1}^n f(\theta _{kj},a_{ij})\nonumber \\ f(\delta _{kj},a_{ji})\omega _k) \end{aligned}$$
(12.14)

where \(N_l\) denotes the size of block l.

The time calculating Eqs. 12.12 and 12.10 will be bounded by \(O(n^2K)\). While, the time calculating Eqs. 12.13 and 12.14 will be bounded by O(LnK). This will be much efficient for constructing the hierarchical organizations of networks.

Theorem 1

A local optimum of Eq. 12.10 will be guaranteed by recursively calculating Eqs. 12.4 and 12.5 in the chapter.

Proof

From the Proposition 1, we have:

\(L(N|X,B_g)\)

\(=\sum _{i=1}^n \ln P(v=i|X,B_g)\)

\(=\sum _{i=1}^n \ln \sum _{k=1}^K P(v=i,y=k|X,B_g)\)

\(=\sum _{i=1}^n \ln \sum _{k=1}^K P(y=k|v=i,X^{(s)},B_g)\)

\(\frac{P(v=i,y=k|X,B_g)}{P(y=k|v=i,X^{(s)},B_g)}\)

(by Jensen’s inequality)

\(\ge \sum _{i=1}^n \sum _{k=1}^K P(y=k|v=i,X^{(s)},B_g)\ln \frac{P(v=i,y=k|X,B_g)}{P(y=k|v=i,X^{(s)},B_g)}\)

\(\equiv G(X,X^{(s)})\).

Furthermore, we have:

\(G(X^{(s)},X^{(s)})\)

\(=\sum _{i=1}^n\sum _{k=1}^K P(y=k|v=i,X^{(s)},B_g)\ln \frac{P(v=i,y=k|X^{(s)},B_g)}{P(y=k|v=i,X^{(s)},B_g)}\)

\(=\sum _{i=1}^n\sum _{k=1}^K P(y=k|v=i,X^{(s)},B_g)\ln P(v=i|X^{(s)},B_g)\)

\(=\sum _{i=1}^n \ln P(v=i|X^{(s)},B_g)\sum _{k=1}^K P(y=k|v=i,X^{(s)},B_g) \)

\(=\sum _{i=1}^n \ln P(v=i|X^{(s)},B_g)\)

\(= L(N|X^{(s)},B_g)\).

Let \(P(y=k|b=l,X^{(s)},B_g)=\gamma _{ik}^{(s)}\), we have:

\(G(X,X^{(s)})\)

\(=\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K \gamma _{lk}^{(s)}\ln P(v=i,y=k|X,B_g)-\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K \gamma _{ik}^{(s)}\ln P(y=k|v=i,X^{(s)},B_g)\).

So, we have:

\(\arg \max G(X,X^{(s)})\)

\({=}\,\arg \max (\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K \gamma _{lk}^{(s)}\ln P(v=i,y=k|X,B_g)\,{-}\,\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K \gamma _{ik}^{(s)}\ln P(y=k|v=i,X^{(s)},B_g))\)

\(=\arg \max (\sum _{l=1}^L\sum _{b_{il}\ne 0}\sum _{k=1}^K (\gamma _{ik}^{(s)}\ln P(v=i,y=k|X,B_g)))\)

\(=\arg \max E[L(N,Z^{(s)}|X,B_g)]\)

\(=X^{(s+1)}\).

Recall that, the \(\varTheta ^{(s+1)}\), \(\varDelta ^{(s+1)}\) and \(\varOmega ^{(s+1)}\) of \(X^{(s+1)}\) can be computed in terms of \(\gamma _{lk}^{(s)}\) by Eq. 12.4 in the chapter. So, we have:

\(G(X^{(s+1)},X^{(s)})\ge G(X^{(s)},X^{(s)})=L(N|X^{(s)},B_g)\).

Recall that \(L(N|X,B_g) \ge G(X,X^{(s)})\), we have:

\(L(N|X^{(s+1)},B_g)\ge G(X^{(s+1)},X^{(s)}) \ge G(X^{(s)},X^{(s)})=L(N|X^{(s)},B_g)\).

That is to say, the \(X^{(s+1)}\) obtained in the current iteration will be not worse than \(X^{(s)}\) obtained in last iteration. So, we have the theorem.\(\square \)

Proposition 5

In terms of the parameter of X, \(\varTheta \), \(\varDelta \), Z and \(\varOmega \), we have:

$$\begin{aligned} \varPhi =\varTheta B_gZ D^{-1}, \quad \varPsi =\varDelta B_gZ D^{-1} \end{aligned}$$
(12.15)

where \(D=diag(n\varOmega )\).

Proof

We have

\(\phi _{pq}=\sum _{i\in C_q}\frac{1}{N_q}\theta _{pi}\)

where \(i\in C_q\) denotes node i is in the cluster q with a size \(N_q\), and \(\frac{1}{N_q}\) is the probability of selecting node i from cluster q. Furthermore, we have:

\(\phi _{pq}=\frac{1}{n\omega _q}\sum _{i=1}^n\theta _{pi}(B_gZ)_{iq}\).

Similarly, we have:

\(\psi _{pq}=\frac{1}{n\omega _q}\sum _{i=1}^n\delta _{pi}(B_gZ)_{iq}\).

So, we have

\(\varPhi =\varTheta B_gZ D^{-1}, \quad \varPsi =\varDelta B_gZ D^{-1}\).\(\square \)

Proposition 6

Let \(B_{g_i}\) denotes the blocking model on the \(i-th\) layer of the hierarchical organization of network N, we have:

\(P(X|N,B_{g_1},\cdots ,B_{g_h})\propto P(N|X,B_{g_h})P(X)^{g_h}\)

Proof

\(P(X|N,B_{g_1},\cdots ,B_{g_h})\)

\(=\frac{P(X,N,B_{g_1},\cdots ,B_{g_h})}{P(N,B_{g_1},\cdots ,B_{g_h})}\)

\(\propto P(X,N,B_{g_1},\cdots ,B_{g_h})\)

\(=P(N|X,B_{g_1},\cdots ,B_{g_h})P(X,B_{g_1},\cdots ,B_{g_h})\)

\(=P(N|X,B_{g_1},\cdots ,B_{g_h})P(X|B_{g_1},\cdots ,B_{g_h})\)

   \(P(B_{g_h}|B_{g_1},\cdots ,B_{g_{h-1}})\cdots P(B_{g_2}|B_{g_1})P(B_{g_1})\)

\(\propto P(N|X,B_{g_1},\cdots ,B_{g_h})P(X|B_{g_1},\cdots ,B_{g_h})\)

Since two nodes from the same block of \(B_{g_{i-1}}\) will also be in the same block of \(B_{g_i}\), we have:

\(P(X|N,B_{g_1},\cdots ,B_{g_h})\propto P(N|X,B_{g_h})P(X|B_{g_h})=P(N|X,B_{g_h})P(X)^{g_h}\) \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, B., Liu, J. (2016). Mining Multiplex Structural Patterns from Complex Networks. In: Zhong, N., Ma, J., Liu, J., Huang, R., Tao, X. (eds) Wisdom Web of Things. Web Information Systems Engineering and Internet Technologies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44198-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44198-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44196-2

  • Online ISBN: 978-3-319-44198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics