Skip to main content

3.0 T MR Angiography

  • Chapter
  • First Online:
High Field Brain MRI

Abstract

Magnetic resonance angiography (MRA) is a well-established non-invasive technique for the evaluation of intracranial arterial and venous vasculature. It can be performed without and with administration of contrast agent. The use of high field scanners offer important advantages such as increase of the spatial and temporal resolution. Additional gains are obtained with parallel imaging, which significantly reduces examination times and increases anatomical coverage providing the same image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krings T, Hans FJ, Moeller-Hartmann W et al (2002) Time of flight, phase contrast and contrast enhanced magnetic resonance angiography for pre-interventional determination of aneurysm size, configuration, and neck morphology in an aneurysm model in rabbits. Neurosci Lett 326:46–50

    Article  CAS  PubMed  Google Scholar 

  2. Lenz GW, Haacke E, Masaryk TJ et al (1988) In plane vascular imaging: pulse sequences design and strategy. Radiology 166:876–882

    Article  Google Scholar 

  3. Zou Z, MA L, Cheng L, Cay Y, Meng X (2008) Time resolved contras enhanced MR angiography of intracranial lesions. J Magn Reson Imaging 27:692-699

    Google Scholar 

  4. Prince MR, Yucel EK, Kaufmann JA et al (1993) Dynamic gadolinium-enhanced three dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    Article  CAS  PubMed  Google Scholar 

  5. Leung DA, Mckinnon GC, Davis CP et al (1996) Breath-hold contrast-enhanced 3 D MR angiography. Radiology 201:569–571

    Article  Google Scholar 

  6. Prince MR, Narasimhan DL, Jacoby WT (1996) Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. Am J Roentgenol 166:1387–1397

    Article  CAS  Google Scholar 

  7. Prince MR, Narasimham DL, Stanley JC (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792

    Article  CAS  PubMed  Google Scholar 

  8. Scarabino T, Giannatempo GM, Nemore F et al (2003) RM 3.0 Tesla. II parte: L’imaging morfo-funzionale cerebrale. Radiol Med 105:150–161

    PubMed  Google Scholar 

  9. Scarabino T, Nemore F, Giannatempo GM et al (2003) Risonanza Magnetica 3.0 Tesla. Riv Neuroradiol 16(Suppl):314–315

    Article  Google Scholar 

  10. Scarabino T, Nemore F, Giannatempo GM et al (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  11. Scarabino T, Nemore F, Giannatempo GM et al (2004) 3.0 T MR angiography. Riv Neuroradiol 17:777–783

    Article  Google Scholar 

  12. Huang BY, Castillo M (2009) Neurovascular imaging at 1.5 tesla versus 3.0 tesla. Magn Reson Clin N Am 17(1):29–46

    Article  Google Scholar 

  13. Frayne R, Goodyear BG, Dickhoff, et al. (2003) Magnetic resonance imaging at 3.0 tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7): 385–402

    Google Scholar 

  14. Scarabino T, Nemore F, Giannatempo GM et al (2004) Semeiological features of 3.0 T MR imaging: what changes at high magnetic field. Riv Neuroradiol 17:755–764

    Article  Google Scholar 

  15. Takahashi M, Uematsu H, Hatabu H (2003) MR imaging at high magnetic fields. Eur J Radiol 46:45–52

    Article  PubMed  Google Scholar 

  16. Norris DG (2003) High field human imaging. J Magn Reson Imaging 18:519–529

    Article  PubMed  Google Scholar 

  17. Alvarez-Linera J (2008) 3T MRI : Advances in brain imaging. Eur J Radiol 67:415–426

    Article  PubMed  Google Scholar 

  18. Thomas SD, Al-Kwifi O, Emery DJ et al (2002) Application of magnetization transfer at 3.0 T in three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries. J Magn Reson Imaging 15:479–483

    Article  PubMed  Google Scholar 

  19. Parker DL, Buswell HR, Goodrick KC et al (1995) The application of magnetization transfer to MR angiography with reduced total power. Magn Reson Med 34:283–286

    Article  CAS  PubMed  Google Scholar 

  20. Al-Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at 3.0 T in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187

    Article  PubMed  Google Scholar 

  21. Bernstein MA, Huston J 3rd, Lin C et al (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962

    Article  CAS  PubMed  Google Scholar 

  22. Reichenbach JR, Barth M, Haacke EM et al (2000) High resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957

    Article  CAS  PubMed  Google Scholar 

  23. Rutherford M, Malamateniou C, Zeka J et al (2004) MR imaging of the neonatal brain at 3 Tesla. Eur J Paediatr Neurol 8:281–289

    Article  PubMed  Google Scholar 

  24. Willinek WA, Gieseke J, von Falkenhausen M et al (2004) Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Rofo 176:21–26

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann TJ, Huston J 3rd, Cloft HJ et al (2010) A prospective trial of 3 T and 1.5 T time of flight and contrast enhanced MR angiography in the follow up of coiled intracranial aneurysm. AJNR Am J Neuroradiol 31(5):912–918

    Article  CAS  PubMed  Google Scholar 

  26. Sommer T, Maintz D, Schmiedel A et al (2004) High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents and iliac artery stents with a 3.0 Tesla MR system. Rofo 176(5):731–738

    Article  CAS  PubMed  Google Scholar 

  27. Schaafsma JD, Velthuis BK, Majoie CB et al (2010 Jul) (2010) Intracranial aneurysm treated with coil replacement: test characteristics of follow up MR angiography – Multicenter study. Radiology 256(1):209–218

    Article  PubMed  Google Scholar 

  28. Shellock FG, Gounis M, Wakhloo A (2005) Detachable coil for cerebral aneurysms: in vitro evaluation of magnetic field interaction, heating, and artifacts at 3 T. AJNR 26:363–366

    PubMed  Google Scholar 

  29. Gibbs GF, Huston J 3rd, Bernstein MA et al (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-fight MR angiography. Am J Neuroradiol 25(1):84–87

    PubMed  Google Scholar 

  30. Anna MH, Sailer MD et al (2014) Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis. Stroke 45(1):119–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Scarabino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scarabino, T., Pollice, S., Giannatempo, G.M., Nasuto, M., Balzano, R.F., Popolizio, T. (2017). 3.0 T MR Angiography. In: Scarabino, T., Pollice, S., Popolizio, T. (eds) High Field Brain MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-44174-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44174-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44173-3

  • Online ISBN: 978-3-319-44174-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics