Skip to main content

Standard 3.0 T MR Imaging

  • Chapter
  • First Online:
High Field Brain MRI

Abstract

The evaluation of the brain with magnetic resonance imaging can be divided essentially into two parts, morphological and functional study. Standard morphological study provides information about the anatomy of the brain tissue, the cerebrospinal fluid spaces, the skull, the arterial and venous blood vessels; it can also be completed with acquisitions after administration of contrast agent. Functional studies include diffusion weighted imaging (DWI), perfusion weighted imaging (PWI), spectroscpy. Parallel imagin is a new technique wich ensure faster acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwindt W, Kugel H, Bachmann R et al (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol 13:2170–2179

    Article  CAS  PubMed  Google Scholar 

  2. Wansapura JP, Holland SK, Dunn RS et al (1999) NMR relaxation times in the human brain at 3.0 T. J Magn Reson Imaging 9:531–538

    Article  CAS  PubMed  Google Scholar 

  3. Frayne R, Goodyear BG, Dickhoff P et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7):385–402

    PubMed  Google Scholar 

  4. Scarabino T, Nemore F, Giannatempo GM et al (2004) Semeiological features of 3.0 T MR imaging: what changes at high magnetic field. Riv Neuroradiol 17:755–764

    Article  Google Scholar 

  5. Scarabino T, Nemore F, Giannatempo GM et al (2004) 3.0 T imaging. Riv Neuroradiol 17:765–776

    Article  Google Scholar 

  6. Norris DG (2003) High field human imaging. J Magn Reson Imaging 18:519–529

    Article  PubMed  Google Scholar 

  7. Scarabino T, Giannatempo GM, Nemore F et al (2003) RM 3.0 Tesla. II parte: L’imaging morfo-funzionale cerebrale. Radiol Med 105:150–161

    PubMed  Google Scholar 

  8. Scarabino T, Nemore F, Giannatempo GM et al (2003) Risonanza Magnetica 3.0 Tesla. Riv Neuroradiol 16(Suppl):314–315

    Article  Google Scholar 

  9. Scarabino T, Nemore F, Giannatempo GM et al (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  10. Takahashi M, Uematsu H, Hatabu H (2003) MR imaging at high magnetic fields. Eur J Radiol 46:45–52

    Article  PubMed  Google Scholar 

  11. Noebauer-Huhmann I, Ba-Ssalamah A, Mlynarik V et al (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 T versus 1.5 T. Invest Radiol 37(3):114–119

    Article  Google Scholar 

  12. Trattnig S, Ba-Ssalamah A, Noebauer-Huhmann IM et al (2003) MR contrast agent at high field MRI (3 Tesla). Top Magn Reson Imaging 14(5):365–375

    Article  PubMed  Google Scholar 

  13. Buerk BM, Pulido JS, Chiong I et al (2004) Vascular perfusion of choroidal melanoma by 3.0 Tesla magnetic resonance imaging. Trans Am Ophthalmol Soc 102:209–215

    PubMed  PubMed Central  Google Scholar 

  14. Sicotte NL, Voskuhl RR, Bouvier S et al (2003) Comparison of multiple sclerosis lesions at 1.5 T and 3.0 Tesla. Invest Radiol 38(7):423–427

    PubMed  Google Scholar 

  15. Kim DS, Garwood M (2003) High field magnetic resonance techniques for brain research. Curr Opin Neurobiol 13:612–619

    Article  CAS  PubMed  Google Scholar 

  16. Krautmacher C, Tschamps H, Traeber F et al (2003) 3.0 T MR imaging of contrast-enhancing brain tumors: intra-individual study comparing standard and half standard dose at 3.0 T with standard dose at 1.5 T. Eur Radiol 1381:222

    Google Scholar 

  17. Karlberg M, Annertz M, Magnusson M (2004) Acute vestibular neuritis visualized by 3-T magnetic resonance imaging with high-dose gadolinium. Arch Otolaryngol Head Neck Surg 130(2):229–232

    Article  PubMed  Google Scholar 

  18. Nakada T (2003) Clinical experience on 3.0 T systems in Niigata, 1996 to 2002. Invest Radiol 38(7):377–384

    PubMed  Google Scholar 

  19. Allkemper T, Tombach B, Schwindt W et al (2004) Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 T and 3.0 T – initial experience. Radiology 232(3):874–881

    Article  PubMed  Google Scholar 

  20. Lane JI, Ward H, Witte RJ et al (2004) 3-T imaging of the cochlear nerve and labyrinth in cochlear-implant candidates: 3 D fast recovery fast spin echo versus 3 D constructive interference in the steady state techniques. Am J Neuroradiol 25(4):618–622

    PubMed  Google Scholar 

  21. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29(1):9–17

    Article  CAS  PubMed  Google Scholar 

  22. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618

    Article  PubMed  Google Scholar 

  23. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277

    Article  CAS  PubMed  Google Scholar 

  24. Hermier M, Nighoghossian N (2004) Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35(8):1989–1994

    Article  PubMed  Google Scholar 

  25. Hingwala D, Kesavadas C, Thomas B, Kapilamoorthy TR (2010) Clinical utility of susceptibility-weighted imaging in vascular diseases of the brain. Neurol India 58(4):602–607

    Article  PubMed  Google Scholar 

  26. Hutchinson M, Raff U (1988) Fast MRI data acquisition using multiple detectors. Magn Reson Med 6(1):87–91

    Article  CAS  PubMed  Google Scholar 

  27. Ra JG, Rim CY (1993) Fast imaging using subencoding data sets from multiple detectors. Magn Reson Med 30(1):142–145

    Article  CAS  PubMed  Google Scholar 

  28. Roemer PB, Edelstein WA et al (1990) The NMR phase array. Magn Reson Med 16(2):192–225

    Article  CAS  PubMed  Google Scholar 

  29. Sodickson DK, Manning WJ (1999) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 42(5):952–962

    Article  Google Scholar 

  30. Ohlinger MA, Grant AK et al (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50:1018–1030

    Article  Google Scholar 

  31. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  PubMed  Google Scholar 

  32. Sodickson DK (2000) Tailored SMASH image reconstruction for robust in vivo parallel MR imaging. Magn Reson Med 44:243–251

    Article  CAS  PubMed  Google Scholar 

  33. Insko EK, Elliott MA et al (1998) Generalized reciprocity. J Magn Reson 131:111–117

    Article  CAS  PubMed  Google Scholar 

  34. Little MW, Mcrobbie DW (2004) Parallel imaging improves scan speed. Diagn Imaging Eur 5:29–35

    Google Scholar 

  35. Pruessmann KP, Weiger M et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Kluge T, et al. (2001) Parallel acquisition techniques with modified SENSE reconstruction mSENSE. Presented at the First Würzburg Workshop on Parallel Imaging. Würzburg, Germany, 7–10 November 2001, p 92

    Google Scholar 

  37. Griswold MA, Jakob PM et al (2002) Generalized autocalibrating partially parallel acquisition (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  38. Kuhl CK (2004) Parallel imaging in neuroradiology. ASNR Proceedings: 181–182

    Google Scholar 

  39. Gieseke J, Manka C et al (2003) Diffusiongewichtete MRT Aufnahmen mit SENSE bei 3 T. Fortschr Roentgenstr 175:202

    Google Scholar 

  40. Lewin M, Carlesso N et al (2000) Tat-peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Y, Hardy CJ et al (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52:869–877

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Scarabino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scarabino, T. et al. (2017). Standard 3.0 T MR Imaging. In: Scarabino, T., Pollice, S., Popolizio, T. (eds) High Field Brain MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-44174-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44174-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44173-3

  • Online ISBN: 978-3-319-44174-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics