Perspectives of Heavy and Superheavy Nuclei Research

  • A. V. KarpovEmail author
  • V. I. Zagrebaev
  • W. Greiner
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


Low values of the fusion cross sections and very short half-lives of nuclei with \(Z>120\) put obstacles in synthesis of new elements. However the fusion reactions of medium mass projectiles (including RIB) with different actinide targets still can be used for the production of the not-yet-synthesized SH nuclei. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, could be filled in fusion reactions of \(^{48}\)Ca with available lighter isotopes of Pu, Am, and Cm. The neutron-enriched isotopes of SH elements may be produced with the use of a \({}^{48}\)Ca beam if a \(^{250}\)Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible electron capture in \(^{291}\)Fl nucleus formed in the 3n evaporation channel of this reaction with a cross section of about 0.8 pb. Multi-nucleon transfer processes at near barrier collisions of heavy (and very heavy, U-like) ions seem to be the most realistic reaction mechanism allowing one to produce new neutron enriched heavy nuclei located in the unexplored upper part of the nuclear map. The predictions for the production of new neutron rich heavy nuclei in multinucleon transfer reactions will be given. A special attention will be paid to the “inverse” quasi-fission mechanism leading to formation of reaction fragments with masses lighter than projectile and heavier than target masses.


Fusion Reaction Compound Nucleus Fusion Cross Section Shell Effect Fission Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K. Morita et al., J. Phys. Soc. Jpn. 76(4), 043201 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Yu. Ts. Oganessian, V.K. Utyonkov et al., Phys. Rev. C 74, 044602 (2006)Google Scholar
  4. 4.
    V.I. Zagrebaev, M. Itkis, Yu. Oganessian, Phys. At. Nucl. 66, 1033 (2003)CrossRefGoogle Scholar
  5. 5.
    V.I. Zagrebaev, Nucl. Phys. A 734, 164 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Ellison, K.E. Gregorich et al., Phys. Rev. Lett. 105, 182701 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Gates, ChE Düllmann et al., Phys. Rev. C 83, 054618 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hofmann, S. Heinz, R. Mann et al., Eur. Phys. J. A 48, 62 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    V.I. Zagrebaev, W. Greiner, Phys. Rev. C 78, 034610 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Hofmann et al., GSI Rep. 2012–1, 202 (2012)Google Scholar
  11. 11.
    C.E. Düllmann et al., EPJ Web of Conferences (2013), to be publishedGoogle Scholar
  12. 12.
    V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C 85, 014608 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    V.K. Utyonkov et al., Phys. Rev. C 92, 034609 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003)CrossRefGoogle Scholar
  15. 15.
    P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Karpov, V.I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, Walter greiner. Int. J. Mod. Phys. E 21, 1250013 (2012)Google Scholar
  17. 17.
    E.K. Hulet, R.W. Lougheed, J.F. Wild et al., Phys. Rev. Lett. 39, 385 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    H. Essel, K. Hartel, W. Henning et al., Z. Phys. A 289, 265 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    H. Freiesleben, K.D. Hildenbrand et al., Z. Phys. A 292, 171 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    M. Schädel, W. Brüchle, H. Gäggeler et al., Phys. Rev. Lett. 48, 852 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    K.J. Moody, D. Lee, R.B. Welch et al., Phys. Rev. C 33, 1315 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    R.B. Welch, K.J. Moody, K.E. Gregorich et al., Phys. Rev. C 35, 204 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Zagrebaev et al., Phys. Rev. C 84, 044617 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    V.I. Zagrebaev, V.V. Samarin, W. Greiner, Phys. Rev. C 75, 035809 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    C. Simenel et al., J. Phys. Conf. Ser. 420, 012118 (2013)Google Scholar
  26. 26.
    V. Zagrebaev, W. Greiner, J. Phys. G31, 825 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    V. Zagrebaev, W. Greiner, J. Phys. G34, 1 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    V. Zagrebaev, A. Karpov, Y. Aritomo et al., Phys. Part. Nucl. 38, 469 (2007)CrossRefGoogle Scholar
  29. 29.
    V. Zagrebaev, W. Greiner, J. Phys. G34, 2265 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    W. Loveland et al., Phys. Rev. C 83, 044610 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurtGermany

Personalised recommendations