Infrastructure Estimates for a Highly Renewable Global Electricity Grid

  • Magnus Dahl
  • Rolando A. Rodriguez
  • Anders A. Søndergaard
  • Timo Zeyer
  • Gorm B. Andresen
  • Martin “Walterson” GreinerEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


A global electricity grid may offer a number of advantages in a future highly renewable energy system dominated by wind and solar power. In this paper, we provide quantitative estimates for the benefits and costs of an intercontinental HVDC grid connecting a number of highly populated super regions in the Northern Hemisphere. The modeling is based on hourly time series of wind and solar power generation calculated from high-resolution global weather data using the Global Renewable Energy Atlas. Taking a European point of view, we find that the annual need for backup energy can be reduced from 18 to 10 % of the load by connecting to North Africa, the Middle East and Russia. A further reduction to 7 % is found for a grid spanning the whole Northern Hemisphere at the expense of substantial increase in transmission capacities. Comparing the economical benefits to the additional cost of intercontinental transmission lines, we estimate that connecting Europe to its geographically nearest neighbors may reduce the total cost of electricity. Longer distance connections to North America or Asia, on the other hand, would require transmission costs to fall to 15–20 % of current levels.


Wind Turbine Transmission Capacity Renewable Generation Network Layout Solar Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks to Dr. Sarah Becker for providing the data for the US region. GBA gratefully acknowledges financial support from DONG Energy and the Danish Advanced Technology Foundation ( 140-2012-5).


  1. 1.
    S. Chatzivasileiadis, D. Ernst, G. Andersson, The global grid. Renew. Energy 57, 372–383 (2013)CrossRefGoogle Scholar
  2. 2.
    G. Czisch, J. Schmid, Low cost but totally renewable electricity supply for a huge supply area—a European/Transeuropean example, 2006. Unpublished manuscript, Accessed 22 Dec 2015Google Scholar
  3. 3.
    M.Z. Jacobsen, M.A. Delucchi, A path to sustainable energy by 2030. Sci. Am. 301(5), 58–65 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S. Saha, S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y. Chuang, H.-M.H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R.W. Reynolds, G. Rutledge, M. Goldberg, The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc. 91(8), 1015–1057 (2010)CrossRefGoogle Scholar
  5. 5.
    G.B. Andresen, A.A. Søndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis. Energy 93(1), 1074–1088 (2015)CrossRefGoogle Scholar
  6. 6.
    R.A. Rodriguez, S. Becker, G. Andresen, D. Heide, M. Greiner, Transmission needs across a fully renewable European power system. Renew. Energy 63, 467–476 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Becker, R.A. Rodriguez, G.B. Andresen, S. Schramm, M. Greiner, Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014)CrossRefGoogle Scholar
  8. 8.
    M.G. Rasmussen, G.B. Andresen, M. Greiner, Storage and balancing synergies in a fully or highly renewable pan-European power system. Energy Policy 51, 642–651 (2012)CrossRefGoogle Scholar
  9. 9.
    R.A. Rodriguez, S. Becker, M. Greiner, Cost sensitivity in the design of a highly renewable European electricity system. Energy 83, 658–668 (2015)CrossRefGoogle Scholar
  10. 10.
    R.A. Rodriguez, M. Dahl, S. Becker, M. Greiner, Localized vs. synchronized exports across a highly renewable pan-European transmission network. Energy, Sustain. Soc. 5, 21 (2015)Google Scholar
  11. 11.
    S. Becker, B.A. Frew, G.B. Andresen, T. Zeyer, S. Schramm, M. Greiner, M.Z. Jacobsen, Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72, 443–458 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Becker, B.A. Frew, G.B. Andresen, M.Z. Jacobson, S. Schramm, M. Greiner, Renewable build-up pathways for the US: generation costs are not system costs. Energy 81, 437–445 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Pleßmann, M. Erdmann, M. Hlusiak, C. Breyer, Global energy storage demand for a 100% renewable electricity supply. Energy Proc. 46, 22–31 (2014)CrossRefGoogle Scholar
  14. 14.
    H.G. Beyer, G. Heilscher, S. Bofinger, A robust model for the MPP performance of different types of PV-modules applied for the performance check of grid connected systems, Eurosun, Freiburg (2004)Google Scholar
  15. 15.
    S.A Kalogirou, in Solar energy engineering: processes and systems. (Academic Press, 2009)Google Scholar
  16. 16.
    F. Trieb, Concentrating solar power for the Mediterranean region. Technical report, German Aerospace Center (DLR), Institute of Technical Thermodynamics, Section Systems Analysis and Technology Assesment (2005)Google Scholar
  17. 17.
    Center for International Earth Science Information Network CIESIN Columbia University and Centro Internacional de Agricultura Tropical CIAT. Gridded population of the world, version 3 (GPWv3): Population density grid, future estimates (2005)Google Scholar
  18. 18.
    M. Brower (for NREL under supervision of Corbus, D.), Development of Eastern regional wind resource and wind plant output datasets. Technical report, AWS Truewind, LLC, Albany, New York (2009)Google Scholar
  19. 19.
    C. Potter, B. Nijssen (for NREL under supervision of Lew, D), Development of regional wind resource and wind plant output datasets. Technical report, 3TIER (Seattle, Washington, 2009)Google Scholar
  20. 20.
    S. Bofinger, L. von Bremen, K. Knorr, K. Lesch, K. Rohrig, Y.M. Saint-Drenan, M. Speckmann, Raum-zeitliche Erzeugungsmuster von Wind- und Solarenergie in der UCTE-Region und deren Einfluss auf elektrische Transportnetze: Abschlussbericht für Siemens Zentraler Forschungsbereich ISET e.V., Kassel, Technical report, Institut fr Solare Energieversorgungstechnik (2008)Google Scholar
  21. 21.
    B.A. Corcoran, N. Jenkins, M.Z. Jacobson, Effects of aggregating electric load in the United States. Energy Policy 46, 399–416 (2012)CrossRefGoogle Scholar
  22. 22.
    IEA. Electricity Information 2010. OECD/IEA, 2010 edition (2010)Google Scholar
  23. 23.
    B. Wollenberg, A. Wood, Operation, and Control. (John Wiley & Sons, Power Generation, 1996)Google Scholar
  24. 24.
    I. Kaizuka, R. Kurihara, H. Matsukawa, G. Masson, S. Nowak, M. Bruniholz, S. Orlandi, Trends 2015 in photovoltaic applications, Technical report, International Energy Agency (2015)Google Scholar
  25. 25.
    J. Widen, Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE Trans. Sustain. Energy 2(2), 177–183 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Dahl, Power-flow modeling in complex renewable electricity networks, Master’s thesis, Aarhus University, Feb 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Magnus Dahl
    • 1
  • Rolando A. Rodriguez
    • 2
  • Anders A. Søndergaard
    • 3
  • Timo Zeyer
    • 3
  • Gorm B. Andresen
    • 1
  • Martin “Walterson” Greiner
    • 1
    Email author
  1. 1.Department of EngineeringAarhus UniversityAarhus CDenmark
  2. 2.Department of MathematicsAarhus UniversityAarhus CDenmark
  3. 3.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations