Probing QED Vacuum with Heavy Ions

  • Johann RafelskiEmail author
  • Johannes Kirsch
  • Berndt Müller
  • Joachim Reinhardt
  • Walter Greiner
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


We recall how nearly half a century ago the proposal was made to explore the structure of the quantum vacuum using slow heavy-ion collisions. Pursuing this topic we review the foundational concept of spontaneous vacuum decay accompanied by observable positron emission in heavy-ion collisions and describe the related theoretical developments in strong fields QED.


  1. 1.
    O. (Oscar) Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac (translated: On reflection of electrons on a potential step in the context of Dirac’s relativistic dynamics). Z. f. Physik 53, 157 (1929)Google Scholar
  2. 2.
    G.E. Brown, W. Greiner, D.H. Wilkinson (those only contributing to the pertinent topic of panel discussion), Panel discussion: new directions, in nuclear spectroscopy, in Proceedings of the International Conference on Properties of Nuclear States, University of Montréal press, Montréal, 25–30 Aug 1969, pp. 605–630Google Scholar
  3. 3.
    W. Pieper, W. Greiner, Interior electron shells in superheavy nuclei. Z. f. Physik 218, 327 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    D. Rein, Über den Grundzustand überschwerer Atome, (translated: On the groundstate of superheavy atoms). Z. f. Physik 221, 423 (1969)Google Scholar
  5. 5.
    V.S. Popov, Critical charge in quantum electrodynamics. Phys. At. Nucl. 64, 367 (2001)CrossRefGoogle Scholar
  6. 6.
    J. Rafelski, Die Konsequenzen nichtlinearer elektromagnetischer Feldtheorie in überschweren Elementen, Diploma Thesis Institut für Theoretische Physik der Universität Frankfurt am Main, June 1971,
  7. 7.
    J. Rafelski, L.P. Fulcher, W. Greiner, Superheavy elements and an upper limit to the electric field strength. Phys. Rev. Lett. 31, 958 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    J. Rafelski, G. Soff, W. Greiner, Lower bound to limiting fields in nonlinear electrodynamics. Phys. Rev. A 7, 903 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    J. Rafelski, L.P. Fulcher, A. Klein, Fermions and bosons interacting with arbitrarily strong external fields. Phys. Rep. 38, 228 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    B. Müller, H. Peitz, J. Rafelski, W. Greiner, Solution of the Dirac equation for strong external fields. Phys. Rev. Lett. 28, 1235 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    B. Müller, J. Rafelski, W. Greiner, Electron shells in over-critical external fields. Z. f. Physik 257, 62 (1972)Google Scholar
  12. 12.
    U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    B. Müller, J. Rafelski, W. Greiner, Auto-ionization of positrons in heavy-ion collisions. Z. Phys. 257, 183 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    S. Gershtein, Y. Zeldovich, Positron production during the mutual approach of heavy nuclei and the polarization of the vacuum. Sov. Phys. JETP 30, 358 (1970) (Zh. Eksp. Teor. Fiz. 57, 654 (1969))Google Scholar
  15. 15.
    Y.B. Zeldovich, V.S. Popov, Electronic structure of superheavy atoms. Soviet Phys. Uspekhi 14, 673 (1972)Google Scholar
  16. 16.
    J. Rafelski, B. Müller, W. Greiner, The charged vacuum in over-critical fields. Nucl. Phys. B 38, 585 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    B. Müller, Positron creation in superheavy quasi-molecules. Ann. Rev. Nucl. Sci. 26, 351 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    J. Reinhardt, W. Greiner, Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Heidelberg, 1985)CrossRefGoogle Scholar
  20. 20.
    J. Kirsch, B. Müller, J. Rafelski, Quantum Electrodynamics In Strong External Fields, GSI-81-5 (Darmstadt 1981),,
  21. 21.
    J. Rafelski, B. Müller, Magnetic splitting of quasimolecular electronic states in strong fields. Phys. Rev. Lett. 36, 517 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    B. Müller, J. Rafelski, W. Greiner, Electron wave functions in over-critical electrostatic potentials. Nuovo Cimento A 18, 551 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    P.A.M. Dirac, Principles of Quantum Mechanics (Oxford University Press, Oxford, 1982)zbMATHGoogle Scholar
  24. 24.
    See e.g. J.M. Jauch, F.Rohrlich, The Theory of Photons and Electrons, 2nd edn. (Springer, Heidelberg, 1976)Google Scholar
  25. 25.
    L. Fulcher, A. Klein, Stability of the vacuum and quantization of the electron-positron field for strong external fields. Phys. Rev. D 8, 2455 (1973)ADSCrossRefGoogle Scholar
  26. 26.
    L. Fulcher, A. Klein, Remarks concerning a model field theory suggested by quantum electrodynamics in a strong electric field. Ann. Phys. 84, 335 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    E.H. Wichmann, N.M. Kroll, Vacuum polarization in a strong Coulomb field. Phys. Rev. 101, 843 (1956)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)zbMATHGoogle Scholar
  30. 30.
    G.W. Pratt, A generalized single-particle equation. Rev. Mod. Phys. 35, 502 (1963)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    P.G. Reinhard, W. Greiner, H. Arenhovel, Electrons in strong external fields. Nucl. Phys. A 166, 173 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gomberoff, V. Tolmachev, Hartree-fock approximation in quantum electrodynamics. Phys. Rev. D 3, 1796 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    B. Müller, J. Rafelski, Stabilization of the charged vacuum created by very strong electrical fields in nuclear matter. Phys. Rev. Lett. 34, 349 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    R. Serber, Linear modifications in the Maxwell field equations. Phys. Rev. 48, 49 (1935)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    E.A. Uehling, Polarization effects in the positron theory. Phys. Rev. 48, 55 (1935)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    F.T. Porter, M.S. Freedman, Experimental atomic-electron binding energies in Fermium. Phys. Rev. Lett. 27, 293 (1971)ADSCrossRefGoogle Scholar
  37. 37.
    G.A. Rinker-and, L. Wilets, Vacuum polarization in high-\(Z\), finite-size nuclei. Phys. Rev. Lett. 31, 1559 (1973)ADSCrossRefGoogle Scholar
  38. 38.
    G.A. Rinker-and, L. Wilets, Vacuum polarization in strong, realistic electric fields. Phys. Rev. A 12, 748 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    M. Gyulassy, Nuclear size effects on vacuum polarization in muonic Pb. Phys. Rev. Lett. 32, 1393 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    M. Gyulassy, Vacuum polarization in heavy-ion collisions. Phys. Rev. Lett. 33, 921 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    M. Gyulassy, Higher order vacuum polarization for finite radius nuclei. Nucl. Phys. A 244, 497 (1975)ADSCrossRefGoogle Scholar
  42. 42.
    J. Madsen, Universal charge-radius relation for subatomic and astrophysical compact objects. Phys. Rev. Lett. 100, 151102 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    A.B. Migdal, D.N. Voskresenskii, V.S. Popov, About vacuum charge distribution near supercharged nuclei. JETP Lett. 24), 163 (1976) (In Russian: Pisma Zh. Eksp. Teor. Fiz. 24, 186 (1976))Google Scholar
  44. 44.
    A.B. Migdal, V.S. Popov, D.N. Voskresensky, Distribution of vacuum charge near supercharged nuclei. Sov. Phys. JETP 45, 436 (1977) (In Russian: Zh. Eksp. Teor. Fiz. 72, 834 (1977))Google Scholar
  45. 45.
    J. Ferreirinho, R. Ruffini, S. Stella, On the relativistic Thomas-Fermi model. Phys. Lett. B 91, 314 (1980)ADSCrossRefGoogle Scholar
  46. 46.
    R. Ruffini, L. Stella, Some comments on the relativistic Thomas-Fermi model and the Vallarta-Rosen equation. Phys. Lett. B 102, 442 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    G.W. Erickson, D.R. Yennie, Radiative level shifts, I. Formulation and lowest order Lamb shift. Ann. Phys. (NY) 35, 271 (1965)Google Scholar
  48. 48.
    G.W. Erickson, D.R. Yennie, Radiative level shifts II: Higher order contributions to the Lamb shift. Ann. Phys. (NY) 35, 447 (1965)Google Scholar
  49. 49.
    G.E. Brown, J.S. Langer, G.W. Schaefer, Lamb shift of a tightly bound electron. I. Method. Proc. Roy. Soc. A 251, 92 (1959)ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    G.E. Brown, D.F. Mayers, Lamb shift of a tightly bound electron. II. Calculation for the K-Electron in Mercury. Proc. Roy. Soc. A 251, 105 (1959)ADSCrossRefzbMATHGoogle Scholar
  51. 51.
    G.W. Erickson, Improved Lamb-shift calculation for all values of \(Z\). Phys. Rev. Lett. 27, 780 (1971)ADSCrossRefGoogle Scholar
  52. 52.
    A.M. Desiderio, W.R. Johnson, Lamb shift and binding energies of K electrons in heavy atoms. Phys. Rev. A 3, 1267 (1971)ADSCrossRefGoogle Scholar
  53. 53.
    P. Mohr, Lamb shift in a strong Coulomb potential. Phys. Rev. Lett. 34, 1050 (1973)ADSCrossRefGoogle Scholar
  54. 54.
    K.T. Cheng, W.R. Johnson, Self-energy corrections to the K-electron binding in heavy and superheavy atoms. Phys. Rev. A 14, 1943 (1976)ADSCrossRefGoogle Scholar
  55. 55.
    I. Goidenko, L. Labzowsky, A. Nefiodov, G. Plunien, G. Soff, The second order electron selfenergy in hydrogen—like ions. Phys. Rev. Lett. 83, 2312 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    P. Indelicato, J.P. Santos, S. Boucard, J.-P. Desclaux, QED and relativistic corrections in superheavy elements. Eur. Phys. J. D 45, 155 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    J. Rafelski, B. Müller, W. Greiner, Superheavy electronic molecules. Lett. Nuovo Cim. 4, 469 (1972)CrossRefGoogle Scholar
  58. 58.
    J. Rafelski, B. Müller, W. Greiner, Spontaneous vacuum decay of supercritical nuclear composites. Z. Physik A 285, 49 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    J. Kirsch, W. Betz, J. Reinhardt, G. Soff, B. Müller, W. Greiner, K-X-ray spectrum of the Pb + Pb quasimolecules. Phys. Lett. B 72, 298 (1978)Google Scholar
  60. 60.
    R. Anholt, X rays from quasimolecules. Rev. Mod. Phys. 57, 995 (1985)ADSCrossRefGoogle Scholar
  61. 61.
    B. Müller, J. Rafelski, W. Greiner, Solution of the Dirac equation with two Coulomb centers. Phys. Lett. B 47, 5 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    B. Müller, W. Greiner, Two-center Dirac equation. Z. Naturforsch. 31a, 1 (1976)Google Scholar
  63. 63.
    K. Smith, B. Müller, W. Greiner, Dynamical theory of intermediate molecular phenomena in heavy-ion scattering. J. Phys. B 8, 75 (1975)ADSCrossRefGoogle Scholar
  64. 64.
    W. Betz, Ph.D. Dissertation, Elektronen in Superschweren Quasimoleculen (Univ. Frankfurt, 1980)Google Scholar
  65. 65.
    G. Soff, W. Greiner, W. Betz, B. Müller, Electrons in superheavy quasimolecules. Phys. Rev. A 20, 169 (1979)ADSCrossRefGoogle Scholar
  66. 66.
    J. Rafelski, B. Müller, The critical distance in collisions of heavy-ions. Phys. Lett. B 65, 205 (1976)ADSCrossRefGoogle Scholar
  67. 67.
    K.H. Wietschorke, Self-consistent determination of critical two-center distances, ed. by B. Müller, W. Greiner, G. Soff, J. Phys. B 12, L1 (1979)Google Scholar
  68. 68.
    See e.g. T.G. Heil, A. Dalgarno, Diabatic molecular states. J. Phys. B 12 L557 (1979) and references thereinGoogle Scholar
  69. 69.
    G. Soff, V. Oberacker, W. Greiner, Inner-shell ionization induced by nuclear Coulomb excitation in collisions of very heavy-ions. Phys. Rev. Lett. 41, 1167 (1978)ADSCrossRefGoogle Scholar
  70. 70.
    J. Reinhardt, V. Oberacker, B. Mller, G. Soff, W. Greiner, Positron emission in Pb-Pb and Pb-U collisions. Phys. Lett. B 78, 183 (1978) (with)Google Scholar
  71. 71.
    J. Reinhardt, B. Müller, W. Greiner, in Coherence and Correlation in Atomic Atomic Collisions, ed by. Kleinpoppen, Williams (Plenum Press, New York, 1980), p. 331Google Scholar
  72. 72.
    J. Reinhardt, W. Greiner, B. Müller, G. Soff in Electronic and Atomic Collisions, ed. by N. Oda, K. Takayanagi (North Holland, Amsterdam, 1980), p. 369Google Scholar
  73. 73.
    J. Reinhardt, U. Müller, B. Müller, W. Greiner, The decay of the vacuum in the field of superheavy nuclear systems. Z. Phys. A 303, 173 (1981)ADSCrossRefGoogle Scholar
  74. 74.
    H. Backe et al., Observation of positron creation in superheavy-ion-atom collision systems. Phys. Rev. Lett. 40, 1443 (1978)ADSCrossRefGoogle Scholar
  75. 75.
    C. Kozhuharov et al., Positrons from 1.4-GeV Uranium-atom collisions. Phys. Rev. Lett. 42, 376 (1979)ADSCrossRefGoogle Scholar
  76. 76.
    J. Schweppe et al., EPOS Collaboration, Observation of a peak structure in positron spectra from U + Cm collisions. Phys. Rev. Lett. 51, 2261 (1983)Google Scholar
  77. 77.
    H. Backe et al., Estimates of the nuclear time delay in dissipative U + U and U + Cm collisions derived from the shape of positron and \(\delta \)-Ray spectra. Phys. Rev. Lett. 50, 1838 (1983)ADSCrossRefGoogle Scholar
  78. 78.
    M. Clemente et al., Narrow positron lines from U-U and U-Th collisions. Phys. Lett. B 137, 41 (1984)ADSCrossRefGoogle Scholar
  79. 79.
    W. Koenig et al., Positron lines from subcritical heavy-ion-atom collisions. Z. Phys. A 328, 129 (1987)ADSGoogle Scholar
  80. 80.
    T. Cowan et al., EPOS Collaboration, Anomalous positron peaks from supercritical collisions systems. Phys. Rev. Lett. 54, 1761 (1985)ADSCrossRefGoogle Scholar
  81. 81.
    T. Cowan et al., EPOS Collaboration, Observation of correlated narrow peak structures in positron and electron spectra from superheavy collision systems. Phys. Rev. Lett. 56, 444 (1986)ADSCrossRefGoogle Scholar
  82. 82.
    P. Salabura et al., EPOS Collaboration “Correlated \(e^+e^-\) peaks observed in heavy-ion collisions,”. Phys. Lett. B 245, 153 (1990)ADSCrossRefGoogle Scholar
  83. 83.
    H. Tsertos et al., Systematic studies of positron production in heavy-ion collisions near the Coulomb barrier. Z. Phys. A 342, 79 (1992)Google Scholar
  84. 84.
    I. Konig, E. Berdermann, F. Bosch, P. Kienle, W. Konig, C. Kozhuharov, A. Schroter, H. Tsertos, Investigations of correlated e+ e- emission in heavy-ion collisions near the Coulomb barrier. Z. Phys. A 346, 153 (1993)ADSCrossRefGoogle Scholar
  85. 85.
    U. Leinberger et al., Orange at GSI Collaboration, New results on \(e^+e^-\) line emission in U+Ta collisions. Phys. Lett. B 394, 16 (1997)Google Scholar
  86. 86.
    I. Ahmad et al., APEX spectrometer experiment, Search for monoenergetic positron emission from heavy-ion collisions at Coulomb-Barrier energies. Phys. Rev. Lett. 78, 618 (1997)Google Scholar
  87. 87.
    I. Ahmad et al., APEX spectrometer experiment, Positron-electron pairs produced in heavy-ion collisions. Phys. Rev. C 60, 064601 (1999)Google Scholar
  88. 88.
    S. Heinz et al., ORANGE Collaboration, Positron spectra from internal pair conversion observed in U-238 + Ta-181 collisions. Eur. Phys. J. A 9, 55 (2000)Google Scholar
  89. 89.
    E. Widmann et al., Limits for two photon and e+ e- decay widths of positron—electron scattering resonances for \(\sqrt{s} = 1.78\) MeV to 1.92 MeV. Z. Phys. A 340, 209 (1991)ADSCrossRefGoogle Scholar
  90. 90.
    B. Müller et al., Theoretical attempts to explain the GSI positron lines. AIP Conf. Proc. 189 479 (1989) Presented at: Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms (Santa Barbara, CA) 1 Jan–30 Jun 1988Google Scholar
  91. 91.
    S. Schramm, B. Müller, J. Reinhardt, W. Greiner, Decay of a composite particle as a hypothetical explanation of \(e^+ e^-\) coincidences observed at GSI. Mod. Phys. Lett. A 3, 783 (1988)ADSCrossRefGoogle Scholar
  92. 92.
    J.R. Boyce, LIPSS and DarkLight and HPS and APEX Collaborations. J. Phys. Conf. Ser. 384, 012008 (2012). doi: 10.1088/1742-6596/384/1/012008
  93. 93.
    B.M. Hegelich, G.Mourou, J. Rafelski, Probing the quantum vacuum with ultra intense laser pulses. Eur. Phys. J. ST 223, 6 (2014),

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Johann Rafelski
    • 1
    Email author
  • Johannes Kirsch
    • 2
  • Berndt Müller
    • 3
  • Joachim Reinhardt
    • 4
  • Walter Greiner
    • 2
  1. 1.Department of PhysicsThe University of ArizonaTucsonUSA
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurtGermany
  3. 3.Department of PhysicsDuke UniversityDurhamUSA
  4. 4.Institut für Theoretische PhysikGoethe-Universität FrankfurtFrankfurtGermany

Personalised recommendations