Advertisement

Electromagnetic Emissivity of Hot and Dense Matter

  • E. L. BratkovskayaEmail author
  • O. Linnyk
  • W. Cassing
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow \(v_2\) of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon \(v_2\) “puzzle”. In addition, the direct photon triangular flow carries valuable information on the photon production sources. While the dilepton spectra at low invariant mass (0.3–0.6 GeV) show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation once the background from correlated lepton pairs from D-meson decays is subtracted.

Keywords

Photon Spectrum Direct Photon Photon Production Elliptic Flow ALICE Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.L. Feinberg, Izv. Akad. Nauk Ser. Fiz. 34, 1987 (1970); Nuovo Cim. A 34, 391 (1976); E.V. Shuryak. Phys. Lett. B 78, 150 (1978)Google Scholar
  2. 2.
    W. Bauer et al., Phys. Rev. C 34, 2127 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    R. Rapp, Adv. High Ener. Phys. 2013, 148253 (2013). R. Rapp, J. Wambach, H. van Hees, in Relativistic Heavy-Ion Physics, ed. by R. Stock, Landolt-Boernstein, vol. I/23 (2010), pp. 4–1Google Scholar
  4. 4.
    A. Adare et al., PHENIX Collaboration. Phys. Rev. 81, 034911 (2010)ADSGoogle Scholar
  5. 5.
    W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008); Nucl. Phys. A 831, 215 (2009); E.L. Bratkovskaya et al., Nucl. Phys. A 856, 162 (2011)Google Scholar
  6. 6.
    L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    C. Gale, J. Kapusta, Phys. Rev. C 35, 2107 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    R. Rapp, G. Chanfray, J. Wambach, Nucl. Phys. A 617, 472 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    W. Cassing et al., Phys. Rev. Lett. 110, 182301 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K. Kajantie, J. Kapusta, L. McLerran, A. Mekjian, Phys. Rev. D 34, 2746 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ilner et al., Nucl. Phys. A 927, 249 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0111, 057 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ghiglieri, Nucl. Phys. A 931, 206 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J.I. Kapusta, P. Lichard, D. Seibert, Phys. Rev. D 44, 2774 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    E.L. Bratkovskaya, S.M. Kiselev, G.B. Sharkov, Phys. Rev. C 78, 034905 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    O. Linnyk et al., Phys. Rev. C 88, 034904 (2013); ibid C 89, 034908 (2014); ibid C 92, 054914 (2015)Google Scholar
  17. 17.
    S. Turbide, R. Rapp, C. Gale, Phys. Rev. C 69, 014903 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    R. Albrecht et al., WA98 Collaboration. Phys. Rev. Lett. 76, 3506 (1996); M.M. Aggarval et al., Phys. Rev. Lett. 85, 3595 (2000); ibid 93, 022301 (2004)Google Scholar
  19. 19.
    W. Liu, R. Rapp, Nucl. Phys. A 96, 101 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A. Adare et al., PHENIX Collaboration. Phys. Rev. Lett. 109, 122302 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    D. Lohner et al., ALICE Collaboration, J. Phys. Conf. Ser. 446, 012028 (2013); M. Wilde et al., Nucl. Phys. A 904–905, 573c (2013)Google Scholar
  22. 22.
    L. Ruan, Nucl. Phys. A 931, 185 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    ALICE Collaboration, Phys. Lett. B 7(54), 235 (2016)Google Scholar
  24. 24.
    U. Heinz, J. Liu, C. Shen, Nucl. Phys. A 932, 310 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    C. Shen, arXiv:1603.8101 [nucl-th]
  26. 26.
    O. Linnyk, E.L. Bratkovskaya, W. Cassing, Prog. Part. Nucl. Phys. 87, 50 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    W. Cassing, E.L. Bratkovskaya, Phys. Rept. 308, 65 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    W. Cassing, Eur. Phys. J. ST 168, 3 (2009)CrossRefGoogle Scholar
  29. 29.
    O. Linnyk, J. Phys. G 38, 025105 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Adare et al., PHENIX Collaboration. Phys. Rev. C 91, 064904 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    S. Mizuno, for the PHENIX Collaboration. Nucl. Phys. A 931, 686 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    C. Shen et al., Nucl. Phys. A 9(32), 184 (2014)Google Scholar
  33. 33.
    M. Dion et al., J. Phys. G 38, 124138 (2011)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Chatterjee et al., Phys. Rev. C 88, 034901 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    H. van Hees et al., Phys. Rev. C 84, 054906 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    C. Shen et al., Phys. Rev. C 89, 044910 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    B. Bannier, Nucl. Phys. A 931, 1189 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    D. Adamova et al., CERES Collaboration. Nucl. Phys. A 715, 262 (2003); Phys. Lett. B 666, 425 (2008)Google Scholar
  39. 39.
    R. Arnaldi et al., NA60 Collaboration. Phys. Rev. Lett. 96, 162302 (2006). Eur. Phys. J. C 61, 711 (2009)Google Scholar
  40. 40.
    G.Q. Li, C.M. Ko, G.E. Brown, Phys. Rev. Lett. 75, 4007 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    E.L. Bratkovskaya, W. Cassing, O. Linnyk, Phys. Lett. B 670, 428 (2009); O. Linnyk et al., Phys. Rev. C 84, 054917 (2011)Google Scholar
  42. 42.
    J. Ruppert, T. Renk, Phys. Rev. C 71, 064903 (2005); Erratum-ibid. C 75, 059901 (2007); K. Dusling, D. Teaney, I. Zahed, Phys. Rev. C 75, 024908 (2007); E. Santini et al., Phys. Rev. C 84, 014901 (2011)Google Scholar
  43. 43.
    A. Toia et al., PHENIX Collaboration. Nucl. Phys. A 774, 743 (2006); J. Phys. G 35, 104037 (2008); A. Adare et al., Phys. Lett. B 670, 313 (2009); Phys. Rev. C 81, 034911 (2010)Google Scholar
  44. 44.
    L. Ruan et al., STAR Collaboration. Nucl. Phys. A 855, 269 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    R. Rapp, Adv. High Ener. Phys. 2013, 148253 (2013)Google Scholar
  47. 47.
    P. Huck, for the STAR Collaboration. Nucl. Phys. A 931, 659 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    X. Dong et al., STAR Collaboration. Nucl. Phys. A 904–905, 19c (2013); F. Geurts et al., Nucl. Phys. A 904–905, 217c (2013)Google Scholar
  49. 49.
    A. Adare et al., Phys. Rev. C 93, 014904 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    G. Vujanovic et al., Phys. Rev. C 89, 034904 (2014). arXiv:1408.1098 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of FrankfurtFrankfurtGermany
  2. 2.Frankfurt Institute for Advanced StudyFrankfurt am MainGermany
  3. 3.Institute for Theoretical PhysicsUniversity of GiessenGiessenGermany

Personalised recommendations