Skip to main content

Impact of the Internet Resources Structure on Energy Consumption While Searching for Information

  • 747 Accesses

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 74)

Abstract

The article presents a new model of the effect of the Internet resources structure impact on the energy efficiency of information search. Existing studies have revealed that the number of Internet queries is growing exponentially. The execution of each one consumes energy. The article also present the state of the art of search engines energy consumption, characteristics of hypertext systems and search engines. Besides, a model of the relationship between the hypertext characteristics and the number of information search steps is developed. For this purpose, the impact of hypertext structure on the steps number on searching for relevant and pertinent information; and the impact of the steps number on energy consumption were studied. As a result, approaches for optimization of hypertext structure in the conditions of uncertainty were formulated. A simulation model allowed testing the adequacy of the developed model of the effect of the structure of distributed hypertext systems on the energy efficiency of information search. To this end, a hypertext model was generated as a random hypergraph. The results can be used to create automated systems for hypertext systems optimization.

Keywords

  • Internet resources structure
  • Information search
  • Energy consumption
  • Hypertext characteristics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44162-7_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-44162-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tom Daly: Dyn,http://dyn.com/blog/evaluating-the-growth-of-internet-traffic/ (2011)

  2. Julien, D.: Retour sur les décisions, les projets et les polémiques de Mozilla des dernières années, http://linuxfr.org/users/julien-d/journaux/retour-sur-les-decisions-les-projets-et-les-polemiques-de-mozilla-des-dernieres-annees (2015)

  3. Hölzle, U.: Powering a Google search. Official Blog, https://googleblog.blogspot.com/2009/01/powering-google-search.html

  4. Catena, M.: Energy efficiency in web search engines. In: Proceedings of the 6th Symposium on Future Directions in Information, Published by BCS Learning and Development Ltd. doi:http://dx.doi.org/10.14236/ewic/FDIA2015.1 (2015)

  5. Catena, M., Tonellotto, N.: A study on query energy consumption in web search engines, http://ceur-ws.org/Vol-1404/paper_20.pdf (2013)

  6. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in mobile phones: a measurement study and implications for network applications. University of Massachusetts Amherst, http://people.cs.umass.edu/~arun/papers/TailEnder.pdf (2009)

  7. Berger, P.: How to evaluate websites for better or worse. Inf. Searcher 16(2), 1–10 (2006)

    Google Scholar 

  8. Clifton, B.: Advanced Web Metrics with Google Analytics, 384 p. Wiley (2008) ISBN: 978-0-470-25312-0

    Google Scholar 

  9. Broder, A.Z., Glassman, S., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. SRC Technical Note #1997-015, http://www.std.org/~msm/common/clustering.html

  10. Lin, S.-H., Ho, J.-M.: Discovering informative content blocks from web documents. In: The Proceedings of eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’02), pp. 588–593(2002)

    Google Scholar 

  11. Cai, D., Yu, S., Wen, J.-R., et al.: Block-based Web Search. SIGIR’04, pp. 456–463. Sheffield, South Yorkshire, UK (2004)

    Google Scholar 

  12. Song, R., Liu, H., Wen, J.-R. et al.: Learning block importance models for web pages. In: The Proceedings of the 13th international conference on World Wide Web, pp. 203–211. New York, NY USA (2004)

    Google Scholar 

  13. Chakrabarti, D., Kumar, R., Punera, K.: A graph-theoretic approach to webpage segmentation. In: The Proceeding of the 17th International Conference on World Wide Web, pp. 377–386 (2008)

    Google Scholar 

  14. Page, L., Brin, S., Motwani, R., et al.: The PageRank citation ranking: bringing order to the web, 17 p. Stanford, Stanford InfoLab (1999)

    Google Scholar 

  15. Berkhin, P.: A survey on PageRank computing. Internet Math. 2, 73–120 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Saito, K., Nakano, R.: Improving convergence performance of PageRank computation based on step-length calculation approach. Lecture Notes in Computer Science, vol. 4252, pp. 945–952 (2006)

    Google Scholar 

  17. Dubovoy, V., Moskvin, O.: Development of the hypertext structures fuzzy classification system. Scientific Works of Vinnytsia National Technical University, no. 1, http://works.vntu.edu.ua/index.php/works/article/view/146 (2008)

  18. Botafogo, R.A., Rivlin, E., Shneiderman, B.: Identifying hierarchies and useful metrics. ACM Trans. Inf. Syst. (TOIS) (2), 142–180 1629 (1992). ISSN 1042-1629

    Google Scholar 

  19. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Magazine, http://www.sciam.com/article.cfm?id=00048144-10D2-1C70-84A9809EC588EF21

  20. Glon, O., Dubovoy, V., Moskvin, O.: Site structure optimization in conditions of incomplete information. Scientific Works of Vinnytsia National Technical University, no. 1, http://works.vntu.edu.ua/index.php/works/article/view/48 (2008)

  21. Harary, F., Norman, R., Cartwright, D.: Structural models. An Introduction to the Theory of Directed Graphs, 415 p. Wiley, New York (1965)

    Google Scholar 

  22. Moskvin, O.M., Sailarbek, S., Gromaszek, K.: User behavioral model in hypertext environment. In: Proceedings SPIE 9816, Optical Fibers and Their Applications, 98161. doi:10.1117/12.2229137 (2015)

  23. Sazoglu, F.B., Cambazoglu, B.B., Ozcan, R., et al.: A financial cost metric for result caching. In: Proceedings of SIGIR, ACM, pp. 873–876 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Dubovoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubovoi, V., Moskvin, O. (2017). Impact of the Internet Resources Structure on Energy Consumption While Searching for Information. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds) Green IT Engineering: Concepts, Models, Complex Systems Architectures. Studies in Systems, Decision and Control, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-44162-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44162-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44161-0

  • Online ISBN: 978-3-319-44162-7

  • eBook Packages: EngineeringEngineering (R0)