Integrated Quality Assessment of Linked Thesauri for the Environment

  • Riccardo Albertoni
  • Monica De Martino
  • Alfonso Quarati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9831)

Abstract

Thesauri usability, within a Spatial Data Infrastructure for the Environment, is pivotal for metadata compilation and data discovery. Thesauri effectiveness is affected by their quality. Diverse quality measures are available taking into account different facets, nevertheless an overall measure is needed whenever thesauri have to be compared in order to identify those to be improved for a proper reuse. The paper proposes a methodology for the quality assessment of linked thesauri aimed at providing an overall quality ranking. It provides a proof of concept of the Analytic Hierarchy Process adoption to the set of linked data thesauri deployed in the Thesaurus Framework for the Environment (LusTRE) developed within the EU funded project eENVplus.

Keywords

Environment SKOS thesauri Linked data Quality Analytic Hierarchy Process 

References

  1. 1.
    Abecker, A., Albertoni R., De Martino, M., Podestà, P., Schnitter, K., Wössner, R.: Latest developments of the linked thesaurus framework for the environment (LusTRE). In: ENVIROINFO 2015 Conference, Copenhagen, Denmark (2015)Google Scholar
  2. 2.
    De Martino, M., Albertoni, R.: A multilingual/multicultural semantic-based approach to improve data sharing in a SDI for nature conservation. Int. J. Spat. Data Infrastruct. Res. 6, 206–233 (2011)Google Scholar
  3. 3.
    Berners-Lee, T.: Linked data. http://www.w3.org/DesignIssues/LinkedData.html
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked open data: a survey. Semant. Web J. 7(1), 63–93 (2016)CrossRefGoogle Scholar
  6. 6.
    Suominen, O., Mader, C.: Assessing and improving the quality of SKOS vocabularies. J. Data Semant. 3, 47–73 (2013)CrossRefGoogle Scholar
  7. 7.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)MATHGoogle Scholar
  8. 8.
    Mader, C., Haslhofer, B., Isaac, A.: Finding quality issues in SKOS vocabularies. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 222–233. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Albertoni, R., De Martino, M., Di Franco, S., De Santis, V., Plini, P.: EARTh: an environmental application reference thesaurus in the linked open data cloud. Semant. Web 5(2), 165–171 (2014)Google Scholar
  10. 10.
    Albertoni, R., De Martino, M., Podestà, P.: Environmental thesauri under the lens of reusability. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2014. LNCS, vol. 8650, pp. 222–236. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Batini, C., Scannapieco, M.: Data and Information Quality: Dimensions Principles and Techniques. Springer, Heidelberg (2016)CrossRefMATHGoogle Scholar
  12. 12.
    Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using network measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Albertoni, R. Gòmez-Pérez, A.: Assessing linkset quality for complementing third-party datasets. In: Joint EDBT/ICDT 2013 Workshops, pp. 52–59. ACM, New York (2013)Google Scholar
  14. 14.
    Kontokostas, D., Zaveri, A., Auer, S., Lehmann, J.: TripleCheckMate: a tool for crowdsourcing the quality assessment of linked data. In: 4th Conference on Knowledge Engineering and Semantic Web, St. Petersburg (2013)Google Scholar
  15. 15.
    Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Large-scale linked data integration using probabilistic reasoning and crowdsourcing. Int. J. Very Large Data Bases 22(5), 665–687 (2013)CrossRefGoogle Scholar
  16. 16.
    Debattista, J., Lange, C. Sören, A.: LUZZU – A Framework for Linked Data Quality Assessment’, CoRR abs/1412.3750. http://arxiv.org/abs/1412.3750
  17. 17.
    Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. J. Web Semant. 7(1), 1–10 (2009)CrossRefGoogle Scholar
  18. 18.
    Kless, D., Milton, S.: Towards quality measures for evaluating thesauri. In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds.) MTSR 2010. CCIS, vol. 108, pp. 312–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Albertoni, R., De Martino, M., Podestà, P.: A linkset quality metric measuring multilingual gain in SKOS thesauri. In: 2nd Workshop on Linked Data Quality Co-located with 12th Extended Semantic Web Conference (ESWC 2015) (2015)Google Scholar
  20. 20.
    Suominen, O., Hyvönen, E.: Improving the quality of SKOS vocabularies with Skosify. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 383–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Zavadskasa, E.K., Turskisa, Z., Kildienė, S.: State of art surveys of overviews on MCDM-MADM methods. Technol. Econ. Dev. Econ. 20(1), 165–179 (2014)CrossRefGoogle Scholar
  22. 22.
    Triantaphyllou, E., Shu, B., Sanchez, S.N., Ray, T.: Multi-criteria decision making: an operations research approach. Encycl. Electr. Electron. Eng. 15, 175–186 (1998)Google Scholar
  23. 23.
    Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, New York (1981)CrossRefMATHGoogle Scholar
  24. 24.
    Roy, B.: Classement et choix en présence de points de vue multiples (la méthode ELECTRE). La Revue d’Informatique et de Recherche Opérationelle 8, 57–75 (1968)Google Scholar
  25. 25.
    Roy, B.: The optimisation problem formulation: criticism and overstepping. J. Oper. Res. Soc. 32(6), 427–436 (1981)CrossRefGoogle Scholar
  26. 26.
    Ishizaka, A., Pearman, C., Nemery, P.: AHPSort: an AHP-based method for sorting problems. Int. J. Prod. Res. 50(17), 4767–4784 (2012)CrossRefGoogle Scholar
  27. 27.
    Vaidyaa, O.S., Kumar, S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169(1), 1–29 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Forman, E.H., Selly, M.A.: Decision by Objectives. http://professorforman.com/DecisionByObjectives/DBO.pdf
  29. 29.
    Mustajoki, J., Marttunen, M.: Comparison of multi-criteria decision analytical software: searching for ideas for developing a new eia-specific multi-criteria software. IMPERIA Project Report’. http://imperia.jyu.fi/tuotokset/Annex7.5.13ComparisonofMultiCriteriaDecisionAnalyticalSoftware.pdf
  30. 30.
    Mesarovic, M.D., Macko, D.: Foundations for a Scientific Theory of Hierarchical Systems, pp. 29–50. American Elsevier, New York (1969). Hierarchical StructuresGoogle Scholar
  31. 31.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Saaty, T.L., Vargas, L.: Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math. Model. 5, 309–324 (1984)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Saaty, T.L.: The Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. RWS Publications, Pittsburgh (2011)Google Scholar
  34. 34.
    Saaty, T.L., Vargas, G.: The seven pillars of the analytic hierarchy process. In: Saaty, T.L., Vargas, G. (eds.) Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International Series in Operations Research & Management Science, vol. 175, pp. 23–40. Springer, New York (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Riccardo Albertoni
    • 1
  • Monica De Martino
    • 1
  • Alfonso Quarati
    • 1
  1. 1.IMATI-CNRGenoaItaly

Personalised recommendations