Skip to main content

Hamiltonian Formalism for Singular Theories

  • Chapter
  • First Online:
Classical Mechanics
  • 3343 Accesses

Abstract

Modern particle and field theories often involve auxiliary variables which have no direct physical meaning. We have seen examples of this kind at the end of first chapter: Lagrangian multipliers for holonomic constraints, forceless Hertz mechanics, electrodynamics and the relativistic particle. Their auxiliary character is supplied either by local symmetries presented in the Lagrangian action, or by the algebraic character of equations of motion for these variables. So, in Lagrangian formalism we deal with a singular theory. Equations of motion can have rather a complicated structure, including in general differential equations of the second and the first order as well as algebraic equations. Besides, identities among the equations can be present in the formulation. As a consequence, there is an ambiguity in solutions for any given initial conditions. So, the physical content of a theory with local symmetry is not a simple question. Hamiltonian formalism is well adapted for the investigation of a singular theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Latin indices from the middle of the alphabet, i, j, k, are reserved for those coordinates whose velocities can be found from (8.31). Greek indices from the beginning of the alphabet, α, β, γ, are used to denote the remaining coordinates.

  2. 2.

    Indeed, if they depended on one of \(\dot{q}^{\alpha }\), it would be possible to find it in terms of others q and p, contradicting the rank condition (8.30).

  3. 3.

    Note that we can substitute the velocities \(v^{\underline{\alpha }}(z,v^{\bar{\beta }})\) into the complete Hamiltonian before computing the Poisson brackets, which does not alter the resulting equations of motion. This follows from the fact that the velocities enter into H multiplied by the primary constraints. So, on the constraint surface, \(\{z,v^{\alpha '}(z)\Phi _{\alpha }\} =\{ z,\Phi _{\alpha }\}v^{\alpha '}(z) +\{ z,v^{\alpha '}(z)\}\Phi _{\alpha } =\{ z,\Phi _{\alpha }\}v^{\alpha '}\).

  4. 4.

    If not, the initial variables q A can be re-numbered to achieve this.

  5. 5.

    The velocities v α which “survive” after the variable change are just the Lagrangian multipliers of the Dirac recipe, see below.

  6. 6.

    Remember that the secondary constraints consist of the second-stage, third-stage, …constraints.

  7. 7.

    Recall that we can substitute the velocities \(v^{\underline{\alpha }}(z,\bar{v}^{\bar{\beta }})\) into the complete Hamiltonian before computing the Poisson brackets, which does not alter the resulting equations of motion.

  8. 8.

    For a detailed description of the class, see [10].

  9. 9.

    The operators \(\hat{q}\), \(\hat{p}\) are taken as hermitian, which guarantees that their eigenvalues are real numbers. Since the commutator of Hermitian operators is an anti-Hermitian operator, the factor i appears on the r.h.s. of Eq. (8.117).

  10. 10.

    We do not discuss the problem of ordering of operators which must be solved in each concrete case.

  11. 11.

    We point out that, contrary to electrodynamics, each class of equivalent configurations, \(\tilde{x} =\{ (cf(\tau ),\mathbf{x}(\,f(\tau ))),\mathbf{x}\,\mbox{ is a given function,}\,\frac{df} {d\tau } > 0\}\), contains a representative which is an observable quantity: x μ(τ) = (c τ, x(τ)).

  12. 12.

    This is not a surprise, since we already noticed that (8.189) is a consequence of (8.190).

  13. 13.

    Poisson bracket in field theory is defined by \(\{A(x),B(y)\} =\int d^{3}z\left [\frac{\delta A(x)} {\delta \phi ^{A}(z)} \frac{\delta B(y)} {\delta p_{A}(z)}\right.\left.-\frac{\delta A(x)} {\delta p_{A}(z)} \frac{\delta B(y)} {\delta \phi ^{A}(z)} \right ]\). A and B are taken at the same instance of time. The working formula for computing the variational derivative is \(\frac{\delta A(\phi (x),\partial _{b}\phi (x))} {\delta \phi ^{A}(z)} = \left.\frac{\partial A} {\partial \phi ^{A}}\right \vert _{\phi \rightarrow \phi (x)}\delta ^{3}(x - z) + \left. \frac{\partial A} {\partial \partial _{b}\phi ^{A}}\right \vert _{\phi \rightarrow \phi (x)} \frac{\partial } {\partial xb}\delta ^{3}(x - z)\).

  14. 14.

    After rescaling the parameter, \(\epsilon = -\sqrt{-\dot{x}^{2}}\epsilon '\), it acquires the standard form of a reparametrization.

  15. 15.

    As will be shown below, Eq. (8.275) represents a solution to the equation \(\tilde{p} _{j} = \frac{\partial \tilde{L} } {\partial \dot{q}^{j}}\) defining the conjugate momenta \(\tilde{p} _{j}\) of the extended formulation.

  16. 16.

    In the transition from mechanics to a field theory, derivatives are replaced by variational derivatives. In particular, the last term in Eq. (8.276) reads \(\frac{\delta }{\delta \omega _{ i}(x)}\int d^{3}ys^{a}(x)T_{a}(q^{A}(y),\omega _{i}(y)\).

  17. 17.

    Here the condition (8.354) is important. A theory with higher derivatives, being equivalent to the initial one, has more degrees of freedom than the number of variables q A, see Sect. 2.10 So the extra constraints would be responsible for ruling out these hidden degrees of freedom. Our condition (8.354) precludes the appearance of the hidden degrees of freedom.

  18. 18.

    This is a general situation: given a locally-invariant action, there are special coordinates such that the action does not depend on some of them [10].

  19. 19.

    There are other possibilities for creating trivial local symmetries. For example, in a given Lagrangian action with one of the variables being q, let us make the substitution q = ab, where a, b represent new configuration space variables. The resulting action is equivalent to the initial one, an auxiliary character of one of the new degrees of freedom is guaranteed by the trivial gauge symmetry: a → a′ = α a,  b → b′ = α −1 b. Another simple possibility is to write q = a + b, which implies the symmetry a → a′ = a +α,  b → b′ = bα. The well-known example of this kind transformation is einbein formulation in gravity theory: g μ ν  = e μ a e ν a, which implies local Lorentz invariance.

Bibliography

  1. E. Cartan, Leçons sur les Invariants Intégraux (Hermann, Paris, 1922)

    MATH  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)

    Book  Google Scholar 

  3. A.A. Kirillov, Elements of the Theory of Representations (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  4. V.P. Maslov, M.V. Fedoruk, Semiclassical Approximation in Quantum Mechanics (D. Reidel Publishing Company, Dordrecht, 1981)

    Book  Google Scholar 

  5. A.T. Fomenko, Symplectic Geometry (Gordon and Breach, New York, 1988)

    MATH  Google Scholar 

  6. J.M. Souriau, Structure des systémes dynamiques (Dund, Paris, 1970)

    MATH  Google Scholar 

  7. J.E. Marsden, R.H. Abraham, Foundations of Mechanics, 2nd edn. (Benjamin-Cummings Publishing Company, Inc., Reading, 1978)

    MATH  Google Scholar 

  8. P.A.M. Dirac, Can. J. Math. 2, 129 (1950); Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    Article  MathSciNet  Google Scholar 

  9. A.A. Slavnov, L.D. Faddeev, Introduction in Quantum Theory of Gauge Fields (Nauka, Moscow, 1978)

    MATH  Google Scholar 

  10. D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  11. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  12. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  13. L.D. Landau, E.M. Lifshits, Mechanics (Pergamon Press, Oxford, 1976)

    MATH  Google Scholar 

  14. F.R. Gantmacher, Lectures on Analytical Mechanics (MIR, Moscow, 1970)

    Google Scholar 

  15. S. Weinberg, Gravitation and Cosmology (Willey, New York, 1972)

    Google Scholar 

  16. L.D. Landau, E.M. Lifshits, The Classical Theory of Fields (Pergamon Press, Oxford, 1980)

    Google Scholar 

  17. W. Pauli, Theory of Relativity (Pergamon Press, Oxford, 1958)

    MATH  Google Scholar 

  18. P.G. Bergmann, Introduction to the Theory of Relativity (Academic Press, New York, 1967)

    Google Scholar 

  19. V.A. Ugarov, Special Theory of Relativity (Mir Publishers, Moscow, 1979)

    Google Scholar 

  20. R. Feynman, P. Leighton, M. Sands, The Feynman Lectures on Physics: Commemorative Issue, vol. 2 (Addison-Wesley, Reading, 1989)

    Google Scholar 

  21. H. Hertz, The Principles of Mechanics Presented in a New Form (Dover Publications, New York, 1956)

    Google Scholar 

  22. P.S. Wesson, Five-Dimensional Physics: Classical and Quantum Consequences of Kaluza-Klein Cosmology (World Scientific, Singapore, 2006)

    Book  MATH  Google Scholar 

  23. V.S. Vladimirov, Equations of Mathematical Physics, 3rd edn. (Izdatel’stvo Nauka, Moscow, 1976), 528p. In Russian. (English translation: Equations of Mathematical Physics, ed. by V.S. Vladimirov (M. Dekker, New York, 1971)

    Google Scholar 

  24. A.A. Deriglazov, Phys. Lett. B 626 243–248 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Ehrenberg, R.E. Siday, Proc. R. Soc. Lond. B 62, 8 (1949)

    Article  Google Scholar 

  26. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Schrödinger, Ann. Phys. 81, 109 (1926); See also letters by Shrödinger to Lorentz in: K. Przibram, Briefe zür Wellenmechanik (Wien, 1963)

    Article  Google Scholar 

  28. H. von Helmholtz, J. Math. C, 151 (1886)

    Google Scholar 

  29. K.S. Stelle, Phys. Rev. D16, 953–969 (1977)

    ADS  MathSciNet  Google Scholar 

  30. R.P. Woodard, How Far Are We from the Quantum Theory of Gravity? arXiv:0907.4238 [gr-qc]

    Google Scholar 

  31. M.V. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

    Google Scholar 

  32. D. Bohm, Phys. Rev. 85, 166, 180 (1952)

    Article  ADS  Google Scholar 

  33. F. Mandl, Introduction to Quantum Field Theory (Interscience Publishers Inc., New York, 1959)

    Google Scholar 

  34. W. Yourgrau, S. Mandelstam, Variational Principles in Dynamics and Quantum Theory (Pitman/W. B. Sanders, London/Philadelphia, 1968)

    MATH  Google Scholar 

  35. R.M. Wald, General Relativity (The University of Chicago Press, Chicago/London, 1984)

    Book  MATH  Google Scholar 

  36. P.A.M. Dirac, Quantum Mechanics, 4th edn. (Oxford University Press, London, 1958)

    MATH  Google Scholar 

  37. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964)

    MATH  Google Scholar 

  38. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  39. J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951); P.G. Bergmann, I. Goldberg, Phys. Rev. 98, 531 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.A. Deriglazov, Phys. Lett. A 373 3920–3923, (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  42. F.A. Berezin, M.S. Marinov, JETP Lett. 21, 320 (1975); Ann. Phys. 104, 336 (1977)

    ADS  Google Scholar 

  43. V.A. Borokhov, I.V. Tyutin, Phys. At. Nucl. 61, 1603 (1998); Phys. At. Nucl. 62, 10 (1999)

    Google Scholar 

  44. D.M. Gitman, I.V. Tyutin, Int. J. Mod. Phys. A 21, 327 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. A.A. Deriglazov, K.E. Evdokimov, Int. J. Mod. Phys. A 15, 4045 (2000)

    ADS  MathSciNet  Google Scholar 

  46. A.A. Deriglazov, J. Math. Phys. 50, 012907 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Henneaux, C. Teitelboim, J. Zanelli, Nucl. Phys. B 332, 169 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.A. Deriglazov, Z. Kuznetsova, Phys. Lett. B 646, 47 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Weinberg, The Quantum Theory of Fields, vol. 1 (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  50. S. Weinberg, Lectures on Quantum Mechanics, vol. 1 (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  51. J. Frenkel, Die elektrodynamik des rotierenden elektrons. Z. Phys 37, 243 (1926)

    Article  ADS  MATH  Google Scholar 

  52. L.H. Thomas, The kinematics of an electron with an axis. Philos. Mag. J. Sci. 3 S.7, No.13, 1 (1927)

    Google Scholar 

  53. M. Mathisson, Neue mechanik materieller systeme. Acta Phys. Polon. 6, 163 (1937); Republication: Gen.  Rel. Grav. 42, 1011 (2010)

    Google Scholar 

  54. A. Papapetrou, Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A 209, 248 (1951)

    Google Scholar 

  55. W.M. Tulczyjew, Motion of multipole particles in general relativity theory binaries. Acta Phys. Polon. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  56. W.G. Dixon, A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cimento 34, 317 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  57. F.A.E. Pirani, Acta. Phys. Polon. 15, 389 (1956)

    ADS  MathSciNet  Google Scholar 

  58. H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968)

    Google Scholar 

  59. A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (MacMillan, New York, 1964)

    Google Scholar 

  60. I.B. Khriplovich, A.A. Pomeransky, Equations of motion of spinning relativistic particle in external fields. J. Exp. Theor. Phys. 86, 839 (1998)

    Article  ADS  Google Scholar 

  61. I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (Institute of Physics Publishing, Bristol and Philadelphia, 1995/1998)

    Google Scholar 

  62. R.D. Pisarski, Theory of curved paths. Phys. Rev. D 34, 670 (1986)

    Google Scholar 

  63. A.A. Deriglazov, A. Nersessian, Rigid particle revisited: extrinsic curvature yields the Dirac equation. Phys. Lett. A 378, 1224–1227 (2014)

    Google Scholar 

  64. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)

    Google Scholar 

  65. R.P. Feynman, Quantum Electrodynamics (W.A. Benjamin, New York, 1961)

    MATH  Google Scholar 

  66. M.H.L. Pryce, The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 195, 62 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. L.L. Foldy, S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  68. A.A. Deriglazov, A.M. Pupasov-Maksimov, Geometric constructions underlying relativistic description of spin on the base of non-grassmann vector-like variable. SIGMA 10, 012 (2014)

    MathSciNet  MATH  Google Scholar 

  69. E. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40 (1), 149 (1939)

    Google Scholar 

  70. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA 34 (5), 211 (1948)

    Google Scholar 

  71. A.J. Hanson, T. Regge, The relativistic spherical top. Ann. Phys. 87 (2), 498 (1974)

    Google Scholar 

  72. S.S. Stepanov, Thomas precession for spin and for a rod. Phys. Part. Nucl. 43, 128 (2012)

    Article  Google Scholar 

  73. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  74. A. Staruszkiewicz, Fundamental relativistic rotator. Acta Phys. Polon. B Proc. Suppl. 1, 109 (2008)

    Google Scholar 

  75. A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung. Nucl. Phys. B 885, 1 (2014)

    Google Scholar 

  76. A. Trautman, Lectures on general relativity. Gen. Rel. Grav. 34, 721 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. A.A. Deriglazov, A. Pupasov-Maksimov, Relativistic corrections to the algebra of position variables and spin-orbital interaction. Phys. Lett. B 761, 207 (2016)

    Google Scholar 

  78. A.A. Deriglazov, A.M. Pupasov-Maksimov, Lagrangian for Frenkel electron and position‘s non-commutativity due to spin. Eur. Phys. J. C 74, 3101 (2014)

    Article  Google Scholar 

  79. R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. W. Guzmán Ramírez, A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron and a spinning body in a curved background. J. High Energy Phys. 1403, 109 (2014)

    Article  ADS  Google Scholar 

  81. W.G. Ramirez, A.A. Deriglazov, Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. Phys. Rev. D 92, 124017 (2015)

    Google Scholar 

  82. A.A. Deriglazov, Lagrangian for the Frenkel electron. Phys. Lett. B 736, 278 (2014)

    Article  ADS  MATH  Google Scholar 

  83. J. Magueijo, L. Smolin, Gravity’s rainbow. Class. Quantum Gravity 21, 1725 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. J.B. Conway, A Course in Functional Analysis (Springer, Berlin, 1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deriglazov, A. (2017). Hamiltonian Formalism for Singular Theories. In: Classical Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-44147-4_8

Download citation

Publish with us

Policies and ethics