Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1795 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The Monte Carlo method was the name suggested by Metropolis in the late 1940th for a statistical approach to solving neutron diffusion and multiplication problems that was being developed at that time at the Los Alamos Laboratory (Metropolis 1987). The approach was outlined in a letter sent by von Neumann to the leader of the Theoretical Division, Richtmyer (Richtmyer and von Neumann 1947).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Association of Physicists in Medicine (AAPM): Tissue inhomogeneity corrections for megavoltage photon beams. Radiation Therapy Committee Task Group 65. Report No. 85. Medical Physics Publishing, Madison, WI (2004)

    Google Scholar 

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., et al.: Geant4 – a simulation toolkit. Nucl. Inst. Methods A 506 (3), 250–303 (2003)

    Article  ADS  Google Scholar 

  • Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., Barrand, G., Capra, R., et al.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53 (1), 270–278 (2006)

    Article  ADS  Google Scholar 

  • Anderson, H.L.: Scientific uses of the MANIAC. J. Stat. Phys. 43 (5/6), 731–748 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Baro, J., Sempau, J., Fernandez-Varea, J.M., Salvat, F.: PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Inst. Methods B 100 (1), 31–46 (1995)

    Article  ADS  Google Scholar 

  • Bernal, M.A., Bordage, M.C., Brown, J.M.C., Davidkova, M., Delage, E., El Bitar, Z., Enger, S.A., Francis, Z., et al.: Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 31 (8), 861–874 (2015)

    Article  Google Scholar 

  • Brown, F.B. (ed.): MCNP – a general Monte Carlo N-particle transport code, version 5. Los Alamos National Laboratory Report LA-UR-03-1987, Los Alamos, NM (2003)

    Google Scholar 

  • Brun, R., Hagelberg, R., Hansroul, M., Lassalle, J.C.: Simulation program for particle physics experiments, GEANT. User Guide and Reference Manual. DD/78/2. CERN, Data Handling Division (1978)

    Google Scholar 

  • de Buffon, G.-L.L.: Essai d’Arithm‘etique Morale. Suppl’ement a‘ l’Histoire Naturelle 4, 46–148 (1777)

    Google Scholar 

  • Ford, R.L., Nelson, W.R.: The EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers (Version 3). Stanford Linear Accelerator Center, Report 210, Stanford, CA (1978)

    Google Scholar 

  • Glaisher, J.W.L.: Remarks on the calculation of π. Messenger Math. 2, 119–128 (1873)

    Google Scholar 

  • Hall, A.: On an experimental determination of π. Messenger Math. 2, 113–114 (1873)

    Google Scholar 

  • Hendricks, J.S., Briesmeister, J.F.: Recent MCNP developments. Los Alamos National Laboratory Report LA-UR-91-3456, Los Alamos, NM (1991)

    Google Scholar 

  • Incerti, S., Ivanchenko, A., Karamitros, M., Mantero, A., Moretto, P., Tran, H.N., Mascialino, B., Champion, C., et al.: Comparison of Geant4 very low energy cross section models with experimental data in water. Med. Phys. 37 (9), 4692–4708 (2010)

    Article  Google Scholar 

  • Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., Tessier, F., Walters, B.R.B.: The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. Report PIRS-701: National Research Council of Canada (2013)

    Google Scholar 

  • Larsen, P.O., von Ins, M.: The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics 84, 575–603 (2010)

    Article  Google Scholar 

  • Metropolis, N.: The beginning of the Monte Carlo method. Los Alamos Sci. 15 (Special issue), 125–130 (1987)

    MathSciNet  Google Scholar 

  • Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44 (247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, W.R., Hirayama, H., Rogers, D.W.O.: The EGS4 code system Report SLAC-265. Stanford Linear Accelerator Center, Report 265, Stanford, CA (1985)

    Google Scholar 

  • Nikjoo, H., Uehara, S., Emfietzoglou, D., Brahme, A.: Heavy charged particles in radiation biology and biophysics. New J. Phys. 10, 075006 (2008)

    Article  ADS  Google Scholar 

  • Richtmyer, R.D., von Neumann, J.: Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory Report LAMS-551. Los Alamos (1947)

    Google Scholar 

  • Rogers, D.W.O.: Fifty years of Monte Carlo simulations for medical physics. Phys. Med. Biol. 51 (13), R287–R301 (2006)

    Article  ADS  Google Scholar 

  • Rogers, D.W.O., Faddegon, B.A., Ding, G.X., Ma, C.M.: BEAM - A Monte Carlo code to simulate radiotherapy treatment units. Med. Phys. 22 (5), 503–524 (1995)

    Article  Google Scholar 

  • Salvat, F.: The PENELOPE code system. Specific features and recent improvements. Ann. Nucl. Energy 82, 98–109 (2015)

    Article  Google Scholar 

  • Salvat, F., Fernandez-Varea, J.M., Sempau, J.: Penelope-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux, OECD/NEA Data Bank, France (2011)

    Google Scholar 

  • Seco, J., Verhaegen, F. (eds.): Monte Carlo Techniques in Radiation Therapy. CRC, Boca Raton, FL (2013)

    Google Scholar 

  • Sergè, E.: From X-Rays to Quarks: Modern Physicists and their Discoveries. Dover, Mineola, NY (2007)

    Google Scholar 

  • Stallings, J., Vance, E., Yang, J., Vannier, M.W., Liang, J., Pang, L., Dai, L., Ye, I., Wang, G.: Determining scientific impact using a collaboration index. Proc. Natl. Acad. Sci. USA 110 (24), 9680–9685 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vassiliev, O.N. (2017). Introduction. In: Monte Carlo Methods for Radiation Transport. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-44141-2_1

Download citation

Publish with us

Policies and ethics