Electrical Manipulation and Sorting of Cells

  • Jaka Cemazar
  • Arindam Ghosh
  • Rafael V. DavalosEmail author
Part of the Microsystems and Nanosystems book series (MICRONANO)


Electric fields have been widely used to manipulate cells in microfluidic devices. The versatility and the ease of implementation and fabrication of electric field-based microfluidic systems have made them very popular for a whole host of different biomedical applications. In this chapter, various techniques that are commonly used for manipulating, characterizing, and separating cells in lab-on-a-chip devices and their applications are discussed. Starting from a description of the polarization of a cell and the forces that can act on it in an electric field, the theory that drives different electrokinetic phenomena and the application of these phenomena for on-chip cellular manipulation are herein reviewed. The models that are used to predict the responses of cells in electric fields, as well as techniques commonly used for the numerical modeling of various electrokinetic and electric field-based cellular manipulation techniques, are also detailed. Finally, the electrical modifications of cells in microfluidic devices, specifically electroporation and electrofusion, have been reviewed.


Lab-on-a-chip Microfluidics Electrokinetics Dielectrophoresis Electrorotation AC electroosmosis Cell sorting Cell focusing Micro flow cytometer Electroporation Electrofusion Polarization Electric field Electric field gradient Electrical double layer Dipole Clausius–Mossotti factor Electrophoresis Induced charge electroosmosis Traveing wave dielectrophoresis Dielectrophoretic force Cell-to-cell interactions Transmembrane voltage Shell model Maxwell stress tensor Numerical methods Fluorescence-activated cell sorting Electrical impedance Cytometer Field flow fractionation Electrodes Tumor initiating cells Circulating tumor cells Immunocapture Joule heating Cell lysis Cell pairing Phenotype 





Traveling wave dielectrophoresis


Induced charge electroosmosis


Dielectrophoretic field-flow fractionation


Insulator dielectrophoresis


Contactless dielectrophoresis




Fluorescence-activated cell sorting




Red blood cells



This work was supported by NIH 5R21 CA173092-01.


  1. Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631. doi: 10.1038/nrc3686 CrossRefGoogle Scholar
  2. Asami K, Gheorghiu E, Yonezawa T (1998) Dielectric behavior of budding yeast in cell separation. Biochim Biophys Acta 1381:234–240. doi: 10.1016/S0304-4165(98)00033-6 CrossRefGoogle Scholar
  3. Asami K, Hanai T, Koizumi N (1980) Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359–365. doi: 10.1143/JJAP.19.359 CrossRefGoogle Scholar
  4. Asami K, Yamaguchi T (1992) Dielectric spectroscopy of plant protoplasts. Biophys J 63:1493–1499. doi: 10.1016/S0006-3495(92)81734-4 CrossRefGoogle Scholar
  5. Asami K, Yonezawa T (1996) Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J 71:2192–2200. doi: 10.1016/S0006-3495(96)79420-1 CrossRefGoogle Scholar
  6. Ayliffe HE, Brown SD, Rabbitt RD (2002) Micro-electric impedance spectra of isolated cells recorded in micro-channels. In: Engineering in medicine and biology, 2002. 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES conference, 2002. Proceedings of the Second Joint. vol 2, pp 1692–1693Google Scholar
  7. Ayliffe HE, Bruno Frazier A, Rabbitt RD (1999) Electric impedance spectroscopy using microchannels with integrated metal electrodes. J Microelectromech Syst 8:50–57. doi: 10.1109/84.749402 CrossRefGoogle Scholar
  8. Bao N, Le TT, Cheng J-X, Lu C (2010) Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr Biol 2:113–120. doi: 10.1039/b919820b CrossRefGoogle Scholar
  9. Baret J-C, Miller OJ, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–1858. doi: 10.1039/b902504a CrossRefGoogle Scholar
  10. Bhatt KH, Grego S, Velev OD (2005) An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 21:6603–6612. doi: 10.1021/la050658w CrossRefGoogle Scholar
  11. Čemažar J, Douglas TA, Schmelz EM, Davalos RV (2016) Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. Biomicrofluidics 10:014109. doi: 10.1063/1.4939947 CrossRefGoogle Scholar
  12. Čemažar J, Miklavčič D, Kotnik T (2013) Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields—a review. J Microelectron Electron Compon Mater 43:143–161Google Scholar
  13. Chang J-Y, Wang S, Allen JS et al (2014) A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping. Biomicrofluidics 8:044116. doi: 10.1063/1.4892894 CrossRefGoogle Scholar
  14. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14. doi: 10.1007/s11517-005-0020-2 CrossRefGoogle Scholar
  15. Chen EH, Grote E, Mohler W, Vignery A (2007) Cell–cell fusion. FEBS Lett 581:2181–2193. doi: 10.1016/j.febslet.2007.03.033 CrossRefGoogle Scholar
  16. Cheng I-F, Froude VE, Zhu Y et al (2009) A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9:3193–3201. doi: 10.1039/B910587E CrossRefGoogle Scholar
  17. Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytom Part J Int Soc Anal Cytol 65:124–132. doi: 10.1002/cyto.a.20141 CrossRefGoogle Scholar
  18. Coulter WH (1953) Means for counting particles suspended in a fluid. US2656508 AGoogle Scholar
  19. Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731. doi: 10.1021/ac0340612 CrossRefGoogle Scholar
  20. Davalos R, Huang Y, Rubinsky B (2000) Electroporation: bio-electrochemical mass transfer at the nano scale. Microscale Thermophys Eng 4:147–159. doi: 10.1080/10893950050148115 CrossRefGoogle Scholar
  21. Demircan Y, Koyuncuoglu A, Erdem M et al (2015) Label-free detection of multidrug resistance in K562 cells through isolated 3D-electrode dielectrophoresis. Electrophoresis 36:1149–1157. doi: 10.1002/elps.201400391 CrossRefGoogle Scholar
  22. Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators Phys 121:59–65CrossRefGoogle Scholar
  23. Fabbri E, Borgatti M, Manaresi N et al (2008) Levitation and movement of tripalmitin-based cationic lipospheres on a dielectrophoresis-based lab-on-a-chip device. J Appl Polym Sci 109:3484–3491. doi: 10.1002/app.28413 CrossRefGoogle Scholar
  24. Fatoyinbo HO, Hoeftges KF, Hughes MP (2008) Rapid-on-chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem. Electrophoresis 29:3–10. doi: 10.1002/elps.200700586 CrossRefGoogle Scholar
  25. Fox MB, Esveld DC, Valero A et al (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485CrossRefGoogle Scholar
  26. Fuller CK, Hamilton J, Ackler H et al (2000) Microfabricated multi-frequency particle impedance characterization system. In: Proceedings of the μTAS 2000 symposium. Springer, The NetherlandsGoogle Scholar
  27. Fu L-M, Yang R-J, Lin C-H et al (2004) Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal Chim Acta 507:163–169. doi: 10.1016/j.aca.2003.10.028 CrossRefGoogle Scholar
  28. Fu X, Mavrogiannis N, Doria S, Gagnon Z (2015) Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis. Lab Chip 15:3600–3608. doi: 10.1039/C5LC00504C CrossRefGoogle Scholar
  29. Gagnon Z, Gordon J, Sengupta S, Chang H-C (2008) Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking. Electrophoresis 29:2272–2279. doi: 10.1002/elps.200700604 CrossRefGoogle Scholar
  30. Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32:2466–2487. doi: 10.1002/elps.201100060 CrossRefGoogle Scholar
  31. Gallo-Villanueva RC, Sano MB, Lapizco-Encinas BH, Davalos RV (2013) Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices. Electrophoresis. doi: 10.1002/elps.201300171 Google Scholar
  32. Gao J, Sin MLY, Liu T et al (2011) Hybrid electrokinetic manipulation in high-conductivity media. Lab Chip 11:1770–1775. doi: 10.1039/c1lc20054b CrossRefGoogle Scholar
  33. Gascoyne PRC, Noshari J, Anderson TJ, Becker FF (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30:1388–1398. doi: 10.1002/elps.200800373 CrossRefGoogle Scholar
  34. Gascoyne PRC, Shim S, Noshari J et al (2013) Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis 34:1042–1050. doi: 10.1002/elps.201200496 CrossRefGoogle Scholar
  35. Gascoyne PRC, Vykoual JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92:22–42. doi: 10.1109/JPROC.2003.820535 CrossRefGoogle Scholar
  36. Gascoyne P, Shim S (2014) Isolation of circulating tumor cells by dielectrophoresis. Cancers 6:545–579. doi: 10.3390/cancers6010545 CrossRefGoogle Scholar
  37. Gawad S, Cheung K et al (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251. doi: 10.1039/b313761a CrossRefGoogle Scholar
  38. Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82. doi: 10.1039/B103933B CrossRefGoogle Scholar
  39. Gielen F, deMello AJ, Edel JB (2011) Dielectric cell response in highly conductive buffers. Anal Chem 84:1849–1853. doi: 10.1021/ac2022103 CrossRefGoogle Scholar
  40. Gielen F, Pereira F, deMello AJ, Edel JB (2010) High-resolution local imaging of temperature in dielectrophoretic platforms. Anal Chem 82:7509–7514. doi: 10.1021/ac101557g CrossRefGoogle Scholar
  41. Henslee BE, Morss A, Hu X et al (2011a) Electroporation dependence on cell size: optical tweezers study. Anal Chem 83:3998–4003. doi: 10.1021/ac1019649 CrossRefGoogle Scholar
  42. Henslee EA, Sano MB, Rojas AD et al (2011b) Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis 32:2523–2529. doi: 10.1002/elps.201100081 CrossRefGoogle Scholar
  43. Hoettges KF, McDonnell MB, Hughes MP (2003) Use of combined dielectrophoretic/electrohydrodynamic forces for biosensor enhancement. J Phys Appl Phys 36:L101–L104. doi: 10.1088/0022-3727/36/20/L01 CrossRefGoogle Scholar
  44. Holmes D, Morgan H (2010) Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. Anal Chem 82:1455–1461. doi: 10.1021/ac902568p CrossRefGoogle Scholar
  45. Holmes D, Morgan H, Green NG (2006) High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection. Biosens Bioelectron 21:1621–1630. doi: 10.1016/j.bios.2005.10.017 CrossRefGoogle Scholar
  46. Holmes D, Pettigrew D, Reccius CH et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9:2881. doi: 10.1039/b910053a CrossRefGoogle Scholar
  47. Huang C-T, Weng C-H, Jen C-P (2011) Three-dimensional cellular focusing utilizing a combination of insulator-based and metallic dielectrophoresis. Biomicrofluidics 5:44101–4410111. doi: 10.1063/1.3646757 CrossRefGoogle Scholar
  48. Huang Y, Rubinsky B (1999) Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed Microdevices 2:145–150. doi: 10.1023/A:1009901821588 CrossRefGoogle Scholar
  49. Huang Y, Wang XB, Becker FF, Gascoyne PR (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118–1129. doi: 10.1016/S0006-3495(97)78144-X CrossRefGoogle Scholar
  50. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23:2569–2582. doi: 10.1002/1522-2683(200208)23:16<2569:AID-ELPS2569>3.0.CO;2-M CrossRefGoogle Scholar
  51. Hung M-S, Chang Y-T (2012) Single cell lysis and DNA extending using electroporation microfluidic device. BioChip J 6:84–90. doi: 10.1007/s13206-012-6111-x CrossRefGoogle Scholar
  52. Hu N, Yang J, Joo SW et al (2013) Cell electrofusion in microfluidic devices: a review. Sens Actuators B Chem 178:63–85. doi: 10.1016/j.snb.2012.12.034 CrossRefGoogle Scholar
  53. Hyun K-A, Jung H-I (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34:1028–1041. doi: 10.1002/elps.201200417 CrossRefGoogle Scholar
  54. Ionescu-Zanetti C, Blatz A, Khine M (2007) Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery. Biomed Microdevices 10:113–116. doi: 10.1007/s10544-007-9115-x CrossRefGoogle Scholar
  55. Jen C-P, Chen W-F (2011) An insulator-based dielectrophoretic microdevice for the simultaneous filtration and focusing of biological cells. Biomicrofluidics 5:044105. doi: 10.1063/1.3658644 CrossRefGoogle Scholar
  56. Jones TB (1995) Electromechanics of particles, Digitally printed 1st pbk. version. Cambridge University Press, Cambridge; New YorkCrossRefGoogle Scholar
  57. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22:33–42CrossRefGoogle Scholar
  58. Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrost 37:121–134. doi: 10.1016/0304-3886(96)00006-X CrossRefGoogle Scholar
  59. Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: a review: microfluidics and Miniaturization. Electrophoresis 35:691–713. doi: 10.1002/elps.201300424 CrossRefGoogle Scholar
  60. Kang W, Yavari F, Minary-Jolandan M et al (2013) Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett 13:2448–2457. doi: 10.1021/nl400423c CrossRefGoogle Scholar
  61. Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249. doi: 10.1007/s10544-007-9130-y CrossRefGoogle Scholar
  62. Khoshmanesh K, Akagi J, Nahavandi S et al (2011) Interfacing cell-based assays in environmental scanning electron microscopy using dielectrophoresis. Anal Chem 83:3217–3221. doi: 10.1021/ac2002142 CrossRefGoogle Scholar
  63. Kimura Y, Gel M, Techaumnat B et al (2011) Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet. Electrophoresis 32:2496–2501. doi: 10.1002/elps.201100129 CrossRefGoogle Scholar
  64. Klösgen B, Reichle C, Kohlsmann S, Kramer KD (1996) Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. Biophys J 71:3251–3260CrossRefGoogle Scholar
  65. Kotnik T, Kramar P, Pucihar G et al (2012) Cell membrane electroporation—part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23. doi: 10.1109/MEI.2012.6268438 CrossRefGoogle Scholar
  66. Kotnik T, Miklavčič D (2000) Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric field. Bioelectromagnetics 21:385–394CrossRefGoogle Scholar
  67. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579CrossRefGoogle Scholar
  68. Lee D, Yu C, Papazoglou E et al (2011) Dielectrophoretic particle–particle interaction under AC electrohydrodynamic flow conditions. Electrophoresis 32:2298–2306. doi: 10.1002/elps.201100070 CrossRefGoogle Scholar
  69. Lee RC (2006) Cell injury by electric forces. Ann N Y Acad Sci 1066:85–91. doi: 10.1196/annals.1363.007 CrossRefGoogle Scholar
  70. Markx GH, Rousselet J, Pethig R (1997) DEP-FFF: field-flow fractionation using non-uniform electric fields. J Liq Chromatogr Relat Technol 20:2857–2872. doi: 10.1080/10826079708005597 CrossRefGoogle Scholar
  71. Marszalek P, Liu DS, Tsong TY (1990) Schwan equation and transmembrane potential induced by alternating electric field. Biophys J 58:1053–1058. doi: 10.1016/S0006-3495(90)82447-4 CrossRefGoogle Scholar
  72. Melvin EM, Moore BR, Gilchrist KH et al (2011) On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Biomicrofluidics 5:034113. doi: 10.1063/1.3620419 CrossRefGoogle Scholar
  73. Mernier G, Majocchi S, Mermod N, Renaud P (2012) In situ evaluation of single-cell lysis by cytosol extraction observation through fluorescence decay and dielectrophoretic trapping time. Sens Actuators B Chem 166–167:907–912. doi: 10.1016/j.snb.2012.03.057 CrossRefGoogle Scholar
  74. Minerick AR, Zhou RH, Takhistov P, Chang HC (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24:3703–3717. doi: 10.1002/elps.200305644 CrossRefGoogle Scholar
  75. Moon H-S, Kwon K, Kim S-I et al (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:1118. doi: 10.1039/c0lc00345j CrossRefGoogle Scholar
  76. Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies, Baldock, HertfordshireGoogle Scholar
  77. Morgan H, Holmes D, Green NG (2006) High speed simultaneous single particle impedance and fluorescence analysis on a chip. Curr Appl Phys 6:367–370. doi: 10.1016/j.cap.2005.11.020 CrossRefGoogle Scholar
  78. Morgan H, Izquierdo AG, Bakewell D et al (2001) The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J Phys Appl Phys 34:1553. doi: 10.1088/0022-3727/34/10/316 CrossRefGoogle Scholar
  79. Morgan H, Sun T, Holmes D et al (2007) Single cell dielectric spectroscopy. J Phys Appl Phys 40:61–70. doi: 10.1088/0022-3727/40/1/S10 CrossRefGoogle Scholar
  80. Mulhall HJ, Labeed FH, Kazmi B et al (2011) Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem 401:2455–2463. doi: 10.1007/s00216-011-5337-0 CrossRefGoogle Scholar
  81. Müller T, Gradl G, Howitz S et al (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens Bioelectron 14:247–256. doi: 10.1016/S0956-5663(99)00006-8 CrossRefGoogle Scholar
  82. Neumann E, Schaeferridder M, Wang Y, Hofschneider P (1982) Gene-transfer into mouse lyoma cells by electroporation in high electric-fields. EMBO J 1:841–845Google Scholar
  83. Park S, Zhang Y, Wang T-H, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11:2893. doi: 10.1039/c1lc20307j CrossRefGoogle Scholar
  84. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811. doi: 10.1063/1.3456626 CrossRefGoogle Scholar
  85. Pless BD (2002) Ambulatory blood pump. US6342071 B1Google Scholar
  86. Pohl HA, Crane JS (1971) Dielectrophoresis of cells. Biophys J 11:711–727CrossRefGoogle Scholar
  87. Pucihar G, Kotnik T, Miklavčič D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848. doi: 10.1529/biophysj.108.135541 CrossRefGoogle Scholar
  88. Regtmeier J, Eichhorn R, Viefhues M et al (2011) Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications. Electrophoresis 32:2253–2273. doi: 10.1002/elps.201100055 CrossRefGoogle Scholar
  89. Rosales C, Lim KM (2005) Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in single-cell traps. Electrophoresis 26:2057–2065. doi: 10.1002/elps.200410298 CrossRefGoogle Scholar
  90. Sabuncu AC, Asmar AJ, Stacey MW, Beskok A (2015) Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Electrophoresis 36:1499–1506. doi: 10.1002/elps.201500119 CrossRefGoogle Scholar
  91. Salamanzadeh A, Davalos RV (2014) Electrokinetics and rare-cell detection. In: Microfluidics in detection science, Lab-on-a-chip TechnologiesGoogle Scholar
  92. Salmanzadeh A, Romero L, Shafiee H et al (2012) Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12:182–189. doi: 10.1039/c1lc20701f CrossRefGoogle Scholar
  93. Salmanzadeh A, Sano MB, Gallo-Villanueva RC et al (2013) Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. Biomicrofluidics 7:11809. doi: 10.1063/1.4788921 CrossRefGoogle Scholar
  94. Schwan HP (1983) Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Springer, New York, pp 213–231CrossRefGoogle Scholar
  95. Schwan HP (1968) Electrode polarization impedance and measurements in biological materials. Ann N Y Acad Sci 148:191–209. doi: 10.1111/j.1749-6632.1968.tb20349.x CrossRefGoogle Scholar
  96. Selmeczi D, Hansen TS, Met Ö et al (2011) Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip. Biomed Microdevices 13:383–392. doi: 10.1007/s10544-010-9507-1 CrossRefGoogle Scholar
  97. Shafiee H, Caldwell J, Sano M, Davalos R (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11:997–1006. doi: 10.1007/s10544-009-9317-5 CrossRefGoogle Scholar
  98. Shafiee H, Sano MB, Henslee EA et al (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438. doi: 10.1039/b920590j CrossRefGoogle Scholar
  99. Shim S, Stemke-Hale K, Tsimberidou AM et al (2013) Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 7:011807–011812. doi: 10.1063/1.4774304 CrossRefGoogle Scholar
  100. Shi Y, Yu Z, Shao X (2010) Combination of direct-forcing fictitious domain method and sharp interface method for dielectrophoresis of particles. Particuology 8:351–359. doi: 10.1016/j.partic.2010.01.008 CrossRefGoogle Scholar
  101. Simmons BA, McGraw GJ, Davalos RV et al (2006) The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bull 31:120–124. doi: 10.1557/mrs2006.26 CrossRefGoogle Scholar
  102. Skelley AM, Kirak O, Suh H et al (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152. doi: 10.1038/nmeth.1290 CrossRefGoogle Scholar
  103. Smith JP, Huang C, Kirby BJ (2015) Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis. Biomicrofluidics 9:014116. doi: 10.1063/1.4908049 CrossRefGoogle Scholar
  104. Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252. doi: 10.1017/S0022112004009309 MathSciNetzbMATHCrossRefGoogle Scholar
  105. Sridharan S, Zhu J, Hu G, Xuan X (2011) Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis. doi: 10.1002/elps.201100011 Google Scholar
  106. Srivastava SK, Gencoglu A, Minerick AR (2010) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399:301–321. doi: 10.1007/s00216-010-4222-6 CrossRefGoogle Scholar
  107. Sun T, van Berkel C, Green NG, Morgan H (2009) Digital signal processing methods for impedance microfluidic cytometry. Microfluid Nanofluidics 6:179–187. doi: 10.1007/s10404-008-0315-3 CrossRefGoogle Scholar
  108. Usaj M, Flisar K, Miklavcic D, Kanduser M (2013) Electrofusion of B16-F1 and CHO cells: the comparison of the pulse first and contact first protocols. Bioelectrochemistry 89:34–41. doi: 10.1016/j.bioelechem.2012.09.001 CrossRefGoogle Scholar
  109. Valero A, Braschler T, Renaud P (2010) A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab Chip 10:2216–2225. doi: 10.1039/C003982A CrossRefGoogle Scholar
  110. van den Driesche S, Rao V, Puchberger-Enengl D et al (2012) Continuous cell from cell separation by traveling wave dielectrophoresis. Sens Actuators B Chem 170:207–214. doi: 10.1016/j.snb.2011.01.012 CrossRefGoogle Scholar
  111. Voldman J, Braff RA, Toner M, et al (2000) Quantitative design and analysis of singleparticle dielectrophoretic traps. In: Micro total analysis systems. Springer, pp 431–434Google Scholar
  112. Vykoukal J, Vykoukal DM, Freyberg S et al (2008) Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab Chip 8:1386–1393. doi: 10.1039/b717043b CrossRefGoogle Scholar
  113. Wang HY, Lu C (2006) High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol Bioeng 95:1116–1125. doi: 10.1002/bit.21066 CrossRefGoogle Scholar
  114. Wang X, Wang X-B, Gascoyne PRC (1997) General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J Electrost 39:277–295. doi: 10.1016/S0304-3886(97)00126-5 CrossRefGoogle Scholar
  115. Wong PK, Chen C-Y, Wang T-H, Ho C-M (2004) Electrokinetic bioprocessor for concentrating cells and molecules. Anal Chem 76:6908–6914. doi: 10.1021/ac049479u CrossRefGoogle Scholar
  116. Wu J, Ben Y, Chang H-C (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluidics 1:161–167. doi: 10.1007/s10404-004-0024-5 CrossRefGoogle Scholar
  117. Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloid Interface Sci 296:743–748. doi: 10.1016/j.jcis.2005.09.039 CrossRefGoogle Scholar
  118. Yang F, Yang X, Jiang H, Wang G (2011) Cascade and staggered dielectrophoretic cell sorters. Electrophoresis 32:2377–2384. doi: 10.1002/elps.201100039 Google Scholar
  119. Yao B, Luo G, Feng X et al (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4:603–607. doi: 10.1039/b408422e CrossRefGoogle Scholar
  120. Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields. Electrophoresis 30:2668–2675. doi: 10.1002/elps.200900017 CrossRefGoogle Scholar
  121. Zimmermann U, Friedrich U, Mussauer H et al (2000) Electromanipulation of mammalian cells: fundamentals and application. IEEE-Inst Electrical Electronics Engineers Inc, pp 72–82Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jaka Cemazar
    • 1
  • Arindam Ghosh
    • 1
    • 2
  • Rafael V. Davalos
    • 1
    • 2
    Email author
  1. 1.School of Biomedical Engineering and SciencesVirginia Tech – Wake Forest UniversityBlacksburgUSA
  2. 2.Department of Mechanical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations