Skip to main content

Microfluidic Cell Sorting and Separation Technology

Part of the Microsystems and Nanosystems book series (MICRONANO)

Abstract

Cell sorting and separation is widely used as a critical first step for research and clinical applications where it is needed to isolate individual cell types from a heterogeneous biological sample. In this introductory chapter, we review conventional cell sorting and separation techniques and their applications. To meet the complex and diversifying needs for cell sorting, many microfluidic techniques based on diverse sorting criteria have been developed recently. Microfluidics has many advantages including variety of sorting principles, precise cell manipulation capability, and combination with downstream analysis. We highlight microfluidic cell sorting and separation techniques and their principles, and establish terminologies and metrics used in their analysis. Lastly, we provide perspective of potential future applications or directions for microtechnologies.

Keywords

  • Cell sorting
  • Cell separation
  • Microfluidics
  • Magnetophoresis
  • Dielectrophoresis
  • Optical sorting
  • Acoustic sorting
  • Gravity-driven cell manipulation
  • Inertial microfluidics
  • Aqueous two-phase system
  • FACS
  • MACS
  • Centrifugation
  • Filtration
  • Terminology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44139-9_1
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-44139-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  • Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA 105(47):18165–18170

    CrossRef  Google Scholar 

  • Almeida M, Garcia-Montero AC, Orfao A (2014) Cell purification: a new challenge for biobanks. Pathobiology 81(5–6):261–275

    Google Scholar 

  • Autebert J, Coudert B, Bidard F-C, Pierga J-Y, Descroix S, Malaquin L, Viovy J-L (2012) Microfluidic: an innovative tool for efficient cell sorting. Methods 57(3):297–307

    CrossRef  Google Scholar 

  • Beaujean F (1997) Methods of CD34+ cell separation: comparative analysis. Transfus Sci 18(2):251–261

    CrossRef  Google Scholar 

  • Carmignac DF (2002) Biological centrifugation J. Graham, BIOS Scientific Publishers Ltd., 201 pp., £21-99, ISBN 1 85996 037 5 (2001). Cell Biochem Funct 20(4):357

    CrossRef  Google Scholar 

  • Chen P, Feng XJ, Du W, Liu BF (2008) Microfluidic chips for cell sorting. Front Biosci Landmark 13:2464–2483

    CrossRef  Google Scholar 

  • Cima I, Yee CW, Iliescu FS, Phyo WM, Lim KH, Iliescu C, Tan MH (2013) Label-free isolation of circulating tumor cells in microfluidic devices: current research and perspectives. Biomicrofluidics 7(1):16

    CrossRef  Google Scholar 

  • Despres D, Flohr T, Uppenkamp M, Baldus M, Hoffmann M, Huber C, Derigs HG (2000) CD34(+) cell enrichment for autologous peripheral blood stem cell transplantation by use of the CliniMACS device. J Hematother Stem Cell Res 9(4):557–564

    CrossRef  Google Scholar 

  • Devine SM, Lazarus HM, Emerson SG (2003) Clinical application of hematopoietic progenitor cell expansion: current status and future prospects. Bone Marrow Transplant 31(4):241–252

    CrossRef  Google Scholar 

  • Didar TF, Tabrizian M (2010) Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab Chip 10(22):3043–3053

    CrossRef  Google Scholar 

  • Du Z, Cheng KH, Vaughn MW, Collie NL, Gollahon LS (2007) Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed Microdev 9(1):35–42

    CrossRef  Google Scholar 

  • Gao Y, Li WJ, Pappas D (2013) Recent advances in microfluidic cell separations. Analyst 138(17):4714–4721

    CrossRef  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    CrossRef  Google Scholar 

  • Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer D, Klingebiel T (1998) Isolation and transplantation of autologous peripheral CD34(+) progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplant 21(10):987–993

    CrossRef  Google Scholar 

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095

    CrossRef  Google Scholar 

  • Jin C, McFaul SM, Duffy SP, Deng XY, Tavassoli P, Black PC, Ma HS (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44

    CrossRef  Google Scholar 

  • Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196

    CrossRef  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Investig 119(6):1420–1428

    CrossRef  Google Scholar 

  • Kruger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486–494

    CrossRef  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217

    CrossRef  Google Scholar 

  • Low WS, Abas WAW (2015) Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed Res Int 2015: Article ID 239362

    Google Scholar 

  • Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5:11

    CrossRef  Google Scholar 

  • Nagase K, Kimura A, Shimizu T, Matsuura K, Yamato M, Takeda N, Okano T (2012) Dynamically cell separating thermo-functional biointerfaces with densely packed polymer brushes. J Mater Chem 22(37):19514–19522

    CrossRef  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):U1235–U1210

    CrossRef  Google Scholar 

  • Orfao A, Ruiz-Argüelles A (1996) General concepts about cell sorting techniques. Clin Biochem 29(1):5–9

    CrossRef  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659

    CrossRef  Google Scholar 

  • Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

    CrossRef  Google Scholar 

  • Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249

    CrossRef  Google Scholar 

  • Slaper-Cortenbach ICM, Wijngaarden-du Bois M, de Vries-van Rossen A, Borst HPE, van der Lelie H, van Heugten HG, Verdonck LF, Wulffraat NM, Hoogerbrugge PM (1999) The depletion of T cells from haematopoietic stem cell transplants. Rheumatology 38(8):751–754

    CrossRef  Google Scholar 

  • Strelkauskas AJ, Teodorescu M, Dray S (1975) Enumeration and isolation of human T-lymphocytes and B-lymphocytes by rosette formation with antibody-coated erythrocytes. Clin Exp Immunol 22(1):62–71

    Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    CrossRef  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    CrossRef  Google Scholar 

  • Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic–micromagnetic separation of living cells in continuous flow. Biomed Microdev 8(4):299–308

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonhee Lee , Peter Tseng or Dino Di Carlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, W., Tseng, P., Di Carlo, D. (2017). Microfluidic Cell Sorting and Separation Technology. In: Lee, W., Tseng, P., Di Carlo, D. (eds) Microtechnology for Cell Manipulation and Sorting. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-44139-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44139-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44137-5

  • Online ISBN: 978-3-319-44139-9

  • eBook Packages: EngineeringEngineering (R0)