Advertisement

The Antioxidant Power of Arginine/Nitric Oxide Attenuates Damage Induced by Methyl Viologen Herbicides in Plant Cells

  • N. Correa-Aragunde
  • P. Negri
  • F. Del Castello
  • N. Foresi
  • J. C. Polacco
  • L. LamattinaEmail author
Chapter

Abstract

Since time ago, studying the redox homeostasis in cells is one of the most intriguing and complex puzzle that researchers are confronting to solve. In plant cells, several biochemical and molecular mechanisms have evolved for keeping the pro-oxidant/antioxidant environment between acceptable physiological ranges. Here, we present novel evidence supporting the amino acid l-arginine as a bioactive molecule with antioxidant capacity when plant cells are challenged by an acute oxidative stress triggered by the herbicide methyl viologen (MV). Our results are feeding the controversy generated about the presence of a nitric oxide synthase (NOS) gene in plants, since they indicate that the tandem formed by the NOS substrate l-arginine and the product of the NOS activity, nitric oxide (NO), are potent cellular resources for maintaining cell integrity and coping against high concentrations of reactive oxygen species.

Keywords

Arginine Nitric oxide Antioxidant compounds Methyl viologen Redox balance 

Notes

Acknowledgments

This work was supported by the Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP-2011-0903, and Agencia Nacional de Promoción Científica y Tecnológica PICTs-2011-2383 and -2013-0904 (FONCyT).

References

  1. Amelung W, Zhang X (2001) Determination of amino acid enantiomers in soils. Soil Biol Biochem 33:553–562CrossRefGoogle Scholar
  2. Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acid 20:301–317CrossRefGoogle Scholar
  3. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733CrossRefPubMedGoogle Scholar
  4. Beligni M (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300CrossRefPubMedGoogle Scholar
  5. Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3:199–208CrossRefPubMedGoogle Scholar
  6. Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant, Cell Environ 25:737–748CrossRefGoogle Scholar
  7. Bethke PC (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boutin JP (1982) Purification, properties and subunit structure of arginase from Iris bulbs. Eur J Biochem 127:237–243CrossRefPubMedGoogle Scholar
  9. Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Cai J, Wang J (2016) Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct 7:2303–2311CrossRefPubMedGoogle Scholar
  10. Chatterjee D, Ghosh S, Pal U (2011) Kinetics and mechanism of NO production in the RuIII-(edta) mediated oxidation of L-arginine with H2O2. Dalton Trans 40:683–685CrossRefPubMedGoogle Scholar
  11. Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054CrossRefPubMedGoogle Scholar
  12. Corpas FJ, Palma JM, Del Río LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14CrossRefPubMedGoogle Scholar
  13. Cortés-Giraldo I, Megías C, Alaiz M, Girón-Calle J, Vioque J (2016) Purification of free arginine from chickpea (Cicer arietinum) seeds. Food Chem 192:114–118CrossRefPubMedGoogle Scholar
  14. Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164CrossRefPubMedGoogle Scholar
  15. Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, India, pp 155–166Google Scholar
  16. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223CrossRefGoogle Scholar
  17. Dodge A (1994) Herbicide action and effects on detoxification processes. In: Foyer CH (ed) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, PM Mullineaux, pp 219–223Google Scholar
  18. Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320CrossRefPubMedGoogle Scholar
  19. Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731CrossRefPubMedGoogle Scholar
  20. Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946CrossRefPubMedPubMedCentralGoogle Scholar
  21. Flynn N, Meininger C, Haynes T, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438CrossRefPubMedGoogle Scholar
  22. Forsum O, Svennerstam H, Ganeteg U, Nsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069PubMedGoogle Scholar
  23. Gao HJ, Yang HQ, Wang JX (2009) Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.): the tissue-specific formation of both nitric oxide and polyamines. Sci Hortic 119:147–152 (Amsterdam)CrossRefGoogle Scholar
  24. Gotte G, Amelio E, Russo S, Marlinghaus E, Musci G, Suzuki H (2002) Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett 520:153–155CrossRefPubMedGoogle Scholar
  25. Hoque AM, Okuma E, Banu MN, Nakamura Y, Shimosishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561CrossRefPubMedGoogle Scholar
  26. Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597CrossRefPubMedGoogle Scholar
  27. Jeandroz S, Wipf Daniel, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Ka-Shu Wong G, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Sign 9:re2Google Scholar
  28. Kaiser G, Martinoia E, Wiemken A (1982) Rapid appearance of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method. Z Pflanzenphysiol 107:103–113CrossRefGoogle Scholar
  29. Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41:864–873CrossRefPubMedGoogle Scholar
  30. Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA, El-Khawas SA, Abd El-Monem AA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3:1517–1526Google Scholar
  31. Kishor PPB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438Google Scholar
  32. Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:1475CrossRefGoogle Scholar
  33. Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136CrossRefPubMedGoogle Scholar
  34. Ma X, Cheng Z, Qin R, Qiu Y, Heng Y, Yang H, Ren Y, Wang X, Bi J, Ma X, Zhang X, Wang J, Lei C, Guo X, Wang J, Wu F, Jiang L, Wang H, Wan J (2013) OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant J 73:190–200CrossRefPubMedGoogle Scholar
  35. Miflin BJ, Lea PJ (1982) Ammonia assimilation and amino acid metabolism. In: Nucleic acids and proteins in plants I. Springer, pp 5–64Google Scholar
  36. Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling 1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492CrossRefPubMedPubMedCentralGoogle Scholar
  37. Molesini B, Rotino GL, Spena A, Pandolfini T (2009) Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Note 2:143CrossRefPubMedPubMedCentralGoogle Scholar
  38. Molesini B, Mennella G, Martini F, Francese G, Pandolfini T (2015) Involvement of the putative N-acetylornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol 56:1084–1096CrossRefPubMedGoogle Scholar
  39. Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138:372–383CrossRefPubMedGoogle Scholar
  40. Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgarten M, Philippar K, Carri C, Mokranjac D, Soll J, Whelan J (2006) Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol 143:199–212CrossRefPubMedGoogle Scholar
  41. Nagase S, Takemura K, Ueda A, Hirayama A, Aoyagi K, Kondoh M, Koyama A (1997) A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem Biophys Res Commun 233:150–153CrossRefPubMedGoogle Scholar
  42. Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604CrossRefPubMedGoogle Scholar
  43. Okumoto S (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346CrossRefPubMedGoogle Scholar
  44. Okumoto S (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168CrossRefPubMedGoogle Scholar
  45. Oland K (1959) Nitrogenous reserves of apple trees. Physiol Plant 12:594–648CrossRefGoogle Scholar
  46. Polacco JC, Mazzafera P, Tezotto T (2013) Opinion—nickel and urease in plants: still many knowledge gaps. Plant Sci 199–200:79–90CrossRefPubMedGoogle Scholar
  47. Pudelski B, Kraus S, Soll J, Philippar K (2010) The plant PRAT proteins—preprotein and amino acid transport in mitochondria and chloroplasts. Plant Biol 12:42–55CrossRefPubMedGoogle Scholar
  48. Rockel P (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110CrossRefPubMedGoogle Scholar
  49. Rossig C, Reinbothe C, Gray J, Valdes O, von Wettstein D, Reinbothe S (2013) Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana. Proc Nat Acad Sci U S A 110:19962–19967CrossRefGoogle Scholar
  50. Shafiqul IM, Kim JS (2014) Characterization of a gene encoding acetylornithine deacetylase from rice. Biotechnology 13:54–60 (Faisalabad)Google Scholar
  51. Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shimizu S, Saitoh Y, Yamamoto T, Momose K (1994) Stimulation by hydrogen peroxide of L-arginine metabolism to l-citrulline coupled with nitric oxide synthesis in cultured endothelial cells. Res Commun Chem Pathol Pharmacol 84:315–329PubMedGoogle Scholar
  53. Shingles R, Roh MH, McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles (I. Direct measurement of proton-linked transport). Plant Physiol 112:1375–1381PubMedPubMedCentralGoogle Scholar
  54. Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847CrossRefGoogle Scholar
  55. Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745CrossRefPubMedGoogle Scholar
  56. Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180:620–630CrossRefPubMedGoogle Scholar
  57. Svennerstam H, Jämtgård S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191:459–467CrossRefPubMedGoogle Scholar
  58. Tapiero H, Mathe G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56:439–445CrossRefPubMedGoogle Scholar
  59. Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:315–321CrossRefPubMedGoogle Scholar
  60. Tovar-Mendez A, Todd CD, Polacco JC (2008) The mitochondrial connection. Arginine degradation versus arginine conversion to nitric oxide. Trends Plant Sci 1106–1108Google Scholar
  61. Tun NN (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354CrossRefPubMedGoogle Scholar
  62. VanEtten CH, Miller RW, Wolff IA, Jones Q (1963) Nutrients in seeds, amino acid composition of seeds from 200 angiospermous plant species. J Agric Food Chem 11:399–410CrossRefGoogle Scholar
  63. Wallner S, Hermetter A, Mayer B, Wascher TC (2001) The alpha-amino group of L-arginine mediates its antioxidant effect. Eur J Clin Invest 31:98–102CrossRefPubMedGoogle Scholar
  64. Wascher TC, Posch K, Wallner S, Hermetter A, Kostner GM, Graier WF (1997) Vascular effects of l-Arginine: anything beyond a substrate for the NO-synthase? Biochem Biophys Res Commun 234:35–38CrossRefPubMedGoogle Scholar
  65. Wijnands K, Castermans T, Hommen M, Meesters DM, Poeze M (2015) Arginine and citrulline and the immune response in sepsis. Nutrients 7:1426–1463CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wills RBH, Li Y (2016) Use of arginine to inhibit browning on fresh cut apple and lettuce. Postharvest Biol Technol 113:66–68CrossRefGoogle Scholar
  67. Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:1–14CrossRefGoogle Scholar
  68. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129CrossRefPubMedGoogle Scholar
  69. Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • N. Correa-Aragunde
    • 1
  • P. Negri
    • 1
  • F. Del Castello
    • 1
  • N. Foresi
    • 1
  • J. C. Polacco
    • 2
  • L. Lamattina
    • 1
    Email author
  1. 1.Instituto de Investigaciones BiológicasUniversidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina
  2. 2.Interdisciplinary Plant Group, Department of BiochemistryUniversity of Missouri ColumbiaColumbiaUSA

Personalised recommendations