Skip to main content

The Stabilizing Virtues of Monetary Policy on Endogenous Bubble Fluctuations

  • Chapter
  • First Online:
Sunspots and Non-Linear Dynamics

Part of the book series: Studies in Economic Theory ((ECON.THEORY,volume 31))

  • 523 Accesses

Abstract

We explore the stabilizing role of monetary policy on the existence of endogenous fluctuations when the economy experiences a rational bubble. Considering an overlapping generations model, expectation-driven fluctuations are explained by a portfolio choice between three assets (capital, bonds and money), credit market imperfections and a collateral effect. They occur under a positive bubble on bonds. The key mechanism relies on the existence of gaps between the returns on assets due to financial distortions. Then, we study the stabilizing role of the monetary policy. Such a policy managed by a (standard) Taylor rule has no clear stabilizing virtues.

We would like to thank an anonymous referee for his comments. We also thank Stefano Bosi, Marion Davin, Takashi Kamihigashi, Carine Nourry and Alain Venditti for valuable suggestions. We also thank participants to the Conference in honor of Jean-Michel Grandmont held in Aix-Marseille University on June 2013, to the Conference 12th “Journées Louis-André Gérard-Varet”, to the Conference PET 2013 and to the 13th Annual SAET Conference. Any remaining errors are our own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only few other contributions have analyzed the existence of bubble fluctuations with an interplay between the real and the financial spheres of the economy (Michel and Wigniolle 2003, 2005; Bosi and Seegmuller 2010; Wigniolle 2014).

  2. 2.

    Our work is close to the framework developed by Rochon and Polemarchakis (2006). However, our analysis differs in two main points: First, we take into account the role of collateral on the consumption behavior; Second, we analyze a monetary policy that could fit better the practices of central banks, instead of an interest rate pegging.

  3. 3.

    Recall that the Fisher relationship means that the gross real interest rate is equal to the gross nominal interest rate deflated by the gross inflation rate.

  4. 4.

    As we will see below, the consumer problem has the following structure:

    $$\begin{aligned} max \frac{c_t^{1-\varepsilon _u}}{1-\varepsilon _u}+\beta \frac{d_{t+1}^{1-\varepsilon _v}}{1-\varepsilon _v}\nonumber \\ st. \quad c_t+s_t= & {} w_t\nonumber \\ d_{t+1}= & {} \tilde{R}_{t+1}s_t+\Delta _{t+1},\nonumber \end{aligned}$$

    where \(s_t\) represents global savings of a household, \(\tilde{R}_{t+1}\) the global return on her portfolio, \(w_t\) her labor income and \(\Delta _{t+1}\) a monetary transfer. From this problem, we obtain:

    $$\begin{aligned} \frac{\mathrm {d}s_t}{\mathrm {d}\tilde{R}_{t+1}}\frac{\tilde{R}_{t+1}}{s_t}=\frac{1-\varepsilon _v \tilde{R}_{t+1}s_t/(\tilde{R}_{t+1}s_t+\Delta _{t+1})}{\varepsilon _us_t/(w_t-s_t)+\varepsilon _v\tilde{R}_{t+1}s_t/(\tilde{R}_{t+1}s_t+\Delta _{t+1})}, \end{aligned}$$

    which is positive for \(\varepsilon _v<1\).

  5. 5.

    We assume a full capital depreciation within a period.

  6. 6.

    This manner of introducing a collateral effect differs from models with borrowing/collateral constraint à la Kiyotaki and Moore (1997). First, borrowing is typically used to finance investment project in these models with collateral constraint, whereas in our paper borrowing finances consumption. Second, our CIA constraint implies a limit on the borrowing’s share of total expenditures instead of the borrowing capacity itself. Indeed, using the second-period budget constraint and introducing \(A_{t+1}=(1+i_{t+1})B_{t+1}/p_{t+1}+ R_{t+1}k_{t+1}+\Delta _{t+1}/p_{t+1}\) as the amount of borrowing, we can rewrite our CIA constraint as follows \(A_{t+1}/(p_{t+1}d_{t+1})\le 1-\gamma (k_{t+1})\). Finally, our limit is nonlinear and increasing with collateral, whereas the borrowing limit of a standard collateral constraint is exogenous or linear with collateral.

  7. 7.

    For simplicity, the arguments of the functions and the time subscripts are omitted.

  8. 8.

    The proof of Lemma 1 is given in a technical appendix available on https://sites.google.com/site/liseclainchamosset.

  9. 9.

    To study the existence of expectation-driven fluctuations in an OLG model without collateral, Rochon and Polemarchakis (2006) use similar open market operations to issue money in the economy.

  10. 10.

    Placing a part of their savings in the form of nominal balances in their first period of life, young households have the opportunity to obtain liquidity in their second period of life.

  11. 11.

    Alternatively, \(\theta _t>0\) corresponds to a situation in which the outside money is positive. A positive outside money indicates that there is fiat money in circulation in the economy. In the literature on rational bubble, the bubble is often considered as being fiat money.

  12. 12.

    Indeed, our analysis does not exclude multiplicity of steady states. See Clain-Chamosset-Yvrard and Seegmuller (2013) for more details.

  13. 13.

    The expressions of \(\bar{\eta }_1\) and \(\bar{\eta }_2\) are given in Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.

  14. 14.

    The proof of Lemma 2 is given in a technical appendix available on https://sites.google.com/site/liseclainchamosset.

  15. 15.

    Indeed, we have an odd number of steady states. We prove the existence of at least three steady states in the online technical appendix at https://sites.google.com/site/liseclainchamosset. See also Clain-Chamosset-Yvrard and Seegmuller (2013).

  16. 16.

    In these two papers, the stabilizing role of monetary policies is not addressed in the same way as here. Indeed, the monetary authority directly manages the money growth factor, while it fixes the interest rate in our framework.

  17. 17.

    Since \(\varepsilon _v>\varepsilon _v^{f}>1\), income effects dominate substitution effects. Hence, global savings \((\theta _t+k_{t+1})\) are a decreasing function of their return.

  18. 18.

    \(\varepsilon _u^{s}\) is given by Eq. (10.45) in Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.

  19. 19.

    Figure 10.1 depicts the dynamic properties of the model with \(\varepsilon _u\in (\tilde{\varepsilon }_u,\varepsilon _u^{s})\). The configuration with \(\varepsilon _u>\varepsilon _u^{s}\) can be easily deduce from the former one.

References

  • Benhabib, J., & Laroque, G. (1988). On competitive cycles in productive economies. Journal of Economic Theory, 45, 145–170.

    Article  Google Scholar 

  • Benhabib, J., Schmitt-Grohé, S., & Uribe, M. (2001). The perils of Taylor rules. Journal of Economic Theory, 96, 40–69.

    Article  Google Scholar 

  • Bernanke, B. (2010). Monetary policy and the housing bubble by Ben S. Bernanke Chairman, Speach at the Annual Meeting of the American Economic Association, Atlanta, Georgia, January 3.

    Google Scholar 

  • Bernanke, B., & Woodford, M. (1997). Inflation forecasts and monetary policy. Journal of Money, Credit and Banking, 29, 653–84.

    Article  Google Scholar 

  • Bosi, S., & Seegmuller, T. (2010). On rational exuberance. Mathematical Social Sciences, 59, 249–270.

    Article  Google Scholar 

  • Campbell, J., & Mankiw, G. (1989). Consumption, income and interest rates: Reinterpreting the time series evidence. In O. Blanchard & S. Fisher (Eds.), NBER macroeconomics annual (pp. 185–216). Cambridge MA: MIT Press.

    Google Scholar 

  • Cazzavillan, G., Lloyd-Braga, T., & Pintus, P. (1998). Multiple steady states and endogenous fluctuations with increasing returns to scale in production. Journal of Economic Theory, 80, 60–107.

    Article  Google Scholar 

  • Cazzavillan, G., & Pintus, P. (2005). On competitive cycles and sunspots in productive economies with a positive money stock. Research in Economics, 59, 137–147.

    Article  Google Scholar 

  • Clain-Chamosset-Yvrard, L., & Seegmuller, T. (2013). The stabilizing virtues of fiscal vs. monetary policy on endogenous bubble fluctuations, AMSE Working Paper 2013-43.

    Google Scholar 

  • Clain-Chamosset-Yvrard, L., & Seegmuller, T. (2015). Rational bubbles and macroeconomic fluctuations: The (de-)stabilizing role of monetary policy policy. Mathematical Social Sciences, 79, 1–15.

    Article  Google Scholar 

  • Diamond, P. A. (1965). National debt in a neoclassical growth model. American Economic Review, 55, 1126–1150.

    Google Scholar 

  • Farhi, E., & Tirole, J. (2012). Bubbly liquidity. Review of Economic Studies, 79, 678–706.

    Article  Google Scholar 

  • Farmer, R. E. A. (1986). Deficits and cycles. Journal of Economic Theory, 40, 77–88.

    Article  Google Scholar 

  • Grandmont, J.-M. (1985). On endogenous competitive business cycles. Econometrica, 53, 995–1045.

    Article  Google Scholar 

  • Grandmont, J.-M. (1986). Stabilizing competitive business cycles. Journal of Economic Theory, 40, 57–76.

    Article  Google Scholar 

  • Hahn, F., & Solow, R. (1995). A critical essay on modern macroeconomic theory. Oxford: Basil Blackwell.

    Google Scholar 

  • Iacoviello, M. (2004). Consumption, house prices, and collateral constraints: A structural econometric analysis. Journal of Housing Economics, 13, 304–320.

    Article  Google Scholar 

  • Jappelli, T. (1990). Who is credit constrained in the US economy? Quarterly Journal of Economics, 105, 219–234.

    Article  Google Scholar 

  • Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105, 211–248.

    Article  Google Scholar 

  • LeRoy, S., & Porter, R. (1981). The present value relation: Tests based on variance bounds. Econometrica, 49, 555–584.

    Article  Google Scholar 

  • Martin, A., & Ventura, J. (2012). Economic growth with bubbles bubbles. American Economic Review, 102, 3033–3058.

    Article  Google Scholar 

  • Michel, P., & Wigniolle, B. (2003). Temporary bubbles. Journal of Economic Theory, 112, 173–183.

    Article  Google Scholar 

  • Michel, P., & Wigniolle, B. (2005). Cash-in-advance constraints, bubbles and monetary policy. Macroeconomic Dynamics, 9, 28–56.

    Article  Google Scholar 

  • Rochon, C., & Polemarchakis, H. (2006). Debt, liquidity and dynamics. Economic Theory, 27, 179–211.

    Article  Google Scholar 

  • Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? American Economic Review, 71, 421–436.

    Google Scholar 

  • Shiller, R. J. (1989). Market volatility. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sorger, G. (2005). Active and passive monetary policy in an overlapping generations model. Review of Economic Dynamics, 8, 731–748.

    Article  Google Scholar 

  • Tirole, J. (1985). Asset bubbles and overlapping generations. Econometrica, 53, 1071–1100.

    Article  Google Scholar 

  • Wang, P., & Wen, Y. (2012). Speculative bubbles and financial crises. American Economic Journal: Macroeconomics, 43, 184–221.

    Google Scholar 

  • Wigniolle, B. (2014). Optimism, pessimism and financial bubbles. Journal of Economic Dynamics and Control, 41, 188–208.

    Article  Google Scholar 

  • Wolff, E. N. (1998). Recent trends in the size distribution of household wealth. Journal of Economic Perpectives, 12, 131–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Seegmuller .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Proposition 1

A steady state k is a solution of \(h\left( k\right) =j\left( k\right) \), with:

$$\begin{aligned} h\left( k\right) \equiv \frac{u^{\prime }\left( c(k)\right) }{\beta v^{\prime }\left( d(k)\right) } \end{aligned}$$
(10.39a)
$$\begin{aligned} j\left( k\right) \equiv \frac{1}{1+i^{*}\gamma (k)} \end{aligned}$$
(10.39b)

where \(\quad c\left( k\right) \equiv f(k)-k-d(k)\) and \( d\left( k\right) \equiv \) \(\displaystyle \frac{k[1-f^{\prime }(k)]}{i^{*}\eta _1(k)[1-\gamma (k)]}\).

We start by determining the admissible range of values for k. To ensure \(d(k)>0\), we get at the steady state \(f^{\prime }\left( k\right) <1\). Under Assumption 3, \(f^{\prime }(k)\) is a decreasing function of k. Hence, \(k>f^{\prime -1}\left( 1\right) =\underline{k}\).

Now, we want to determine the range of k such that \(c(k)>0\). The decreasing returns on capital imply \(f\left( \underline{k}\right) >\underline{k}f^{\prime }(\underline{k})\). Since \(f^{\prime }(\underline{k})=1\), \(c(\underline{k})=f(\underline{k})-\underline{k}>0\). In addition, as \(d(k)>0\), we derive the following inequality:

$$\begin{aligned} \lim _{k\rightarrow +\infty }c\left( k\right)< & {} \lim _{k\rightarrow +\infty } f(k)-k=-\infty \end{aligned}$$

because \(f^{\prime }(k)<1\) for k large enough. As a result, there exists one value \(\overline{k}\) such that \(\forall k<\overline{k}\), \(c\left( \overline{k}\right) >0\). By construction, we have \(\underline{k}< \overline{k}\), and therefore \((\underline{k}, \overline{k})\) is a nonempty subset.

To prove the existence of a stationary solution k, we use the continuity of \(h\left( k\right) \) and \(j\left( k\right) \). Using Eqs. (10.39a) and (10.39b), we determine the boundary values of \(h\left( k\right) \) and \(j\left( k\right) \):

$$\begin{aligned} \begin{array}{cc} \lim _{k\rightarrow \underline{k}}h\left( k\right) =\displaystyle \frac{u^{\prime }\left( c\left( \underline{k}\right) \right) }{\beta v^{\prime }(0)}=0^{+} &{} \lim _{k\rightarrow \overline{k}}h\left( k\right) =\displaystyle \frac{u^{\prime }\left( c\left( 0\right) \right) }{\beta v^{\prime }(d(\overline{k}))}=+\infty \\ \lim _{k\rightarrow \underline{k}}j\left( k\right) =\displaystyle \frac{1}{1+i(\underline{k})\gamma (\underline{k})}\in (0, 1] &{} \lim _{k\rightarrow \overline{k}}j\left( k\right) =\displaystyle \frac{1}{1+i(\overline{k})\gamma \left( \overline{k}\right) }\le 1 \end{array} \end{aligned}$$

We have \(\lim _{k\rightarrow \underline{k}}h\left( k\right) <\lim _{k\rightarrow \underline{k}}j\left( k\right) \) and \( \lim _{k\rightarrow \overline{k}}h\left( k\right) >\lim _{k\rightarrow \overline{k}}j\left( k\right) \). Therefore, there exists at least one value \(k^{*} \in \left( \underline{k},\overline{k}\right) \) such that \(h\left( k^{*}\right) =j\left( k^{*}\right) \).    \(\blacksquare \)

1.2 Proof of Example in Section 10.4.2

Let \(\underline{\sigma } \equiv 1-\frac{1}{2+\nu (\eta _1)}\), \(\bar{\alpha }\equiv \frac{1}{2+\nu (\eta _1)}\), \(\underline{A}\equiv \frac{1+\nu (\eta _1)}{\alpha +\nu (\eta _1)}\) and \(\bar{A} \equiv \frac{1/\alpha }{1+\nu (\eta _1)}\). For \(a\in (0,1)\), \(c>1\), \(b\in (ac,c)\) and \(\epsilon >0\), Assumption 2 is satisfied at the normalized steady state. Assumption 3 requires \(A<1/\alpha \) and \(\sigma >1-\alpha \). For \(A>\underline{A}\), Assumption 5 is satisfied. Moreover, the bubble is positive at the normalized steady state when \(A<\overline{A}\). As a consequence, the set \((\underline{A},\bar{A})\) must be non-empty. This is true for \(\alpha <\bar{\alpha }\) and \(\sigma >\underline{\sigma }\).

1.3 Proofs of Proposition 3, Corollaries 1 and 2

$$\begin{aligned} \text { Recall that } \psi= & {} f^{\prime }(1),\,\, \nu (\eta _1)= \eta _1i^{*}\left( 1-\gamma \right)>0,\,\, c^{*}= f(1) -1- \frac{1-\psi }{\nu (\eta _1)}>0, \\ a_\phi= & {} \phi /(1-\phi ) \in (-\infty , -1[\cup [0,+\infty ) \text { and let } \varepsilon _{dk}=\frac{\psi }{1-\psi } \frac{1-\alpha }{\sigma }+ \eta _2>0,\text { and } \nonumber \\ \eta _1^{\theta }= & {} \frac{1-\psi }{\psi }\frac{1}{i^{*}(1-\gamma )}\nonumber .\end{aligned}$$
(10.40)

First of all, we suppose for the rest of the proof that \(\eta _1<\eta _1^{\theta }\), because \(\forall \) \(\eta _1<\eta _1^{\theta }\), \(\theta >0\) (see condtion (10.35)).

From Lemma 2, the expressions of \(1-T+D\), \(1+T+D\) and \(1-D\) can be written as follows:

$$\begin{aligned} 1-T+D= & {} \varepsilon _{dk}\frac{1-\psi \left[ 1+\nu (\eta _1)\right] }{\xi _1(a_\phi )}\frac{\varepsilon _v-\varepsilon _v^{s}}{\varepsilon _v-\bar{\varepsilon }_v}\end{aligned}$$
(10.41)
$$\begin{aligned} 1+T+D= & {} \frac{\xi _3(a_\phi )}{\xi _1(a_\phi )}\frac{\varepsilon _v-\varepsilon _v^{f}}{\varepsilon _v-\bar{\varepsilon }_v}\end{aligned}$$
(10.42)
$$\begin{aligned} 1-D= & {} \frac{\varepsilon _v-\varepsilon _v^{h}}{\varepsilon _v-\bar{\varepsilon }_v} \end{aligned}$$
(10.43)
$$\begin{aligned} \text { where } \varepsilon _v^{s}= & {} \frac{1-\psi }{\nu (\eta _1)}\frac{\nu (\eta _1)+\varepsilon _{dk}}{\varepsilon _{dk}} \frac{\varepsilon _u^{s}-\varepsilon _u}{c^{*}},\,\,\,\, \varepsilon _v^{f}=\frac{\xi _4(a_\phi )}{\xi _3(a_\phi )}\equiv \varepsilon _v^{f}(a_\phi ),\nonumber \\ \varepsilon _v^{h}= & {} \frac{\xi _5(a_\phi )}{\xi _1(a_\phi )}\equiv \varepsilon _v^{h}(a_\phi )\text { and } \bar{\varepsilon }_v=-\frac{\xi _2(a_\phi )}{\xi _1(a_\phi )}\equiv \bar{\varepsilon }_v(a_\phi ) \end{aligned}$$
(10.44)
$$\begin{aligned} \text {with }\varepsilon _u^{s}&= c^{*}\frac{\nu (\eta _1)}{1-\psi }\frac{1}{\nu (\eta _1)+\varepsilon _{dk}}\frac{\nu (\eta _1)}{1+i^{*}\gamma },\end{aligned}$$
(10.45)
$$\begin{aligned} \xi _1(a_\phi )&=-\psi \nu (\eta _1)\left( 1-\small {\frac{1-\alpha }{\sigma }}\right) \frac{1+i^{*}}{i^{*}} a_\phi +\left\{ 1-\psi \left[ 1+\nu (\eta _1)\right] \right\} \varepsilon _{dk}\nonumber \\&\quad -\frac{\psi }{1-\psi }\nu (\eta _1)\left( 1-\frac{1-\alpha }{\sigma }\right) ,\nonumber \\ \end{aligned}$$
(10.46)
$$\begin{aligned} \xi _2(a_\phi )&= \left( 1-\psi \right) \frac{1+i^{*}}{i^{*}}\left\{ -\frac{\varepsilon _u}{c^{*}}+\frac{\nu (\eta _1)}{1+i^{*}\gamma }\left[ 1+i^{*}\gamma \frac{\psi }{1-\psi }\left( 1-\frac{1-\alpha }{\sigma }\right) \right] \right. \nonumber \\&\left. -\varepsilon _{dk}\frac{i^{*}\gamma }{1+i^{*}\gamma }\right\} a_\phi -\psi \left[ 1+\nu (\eta _1)\right] \frac{\varepsilon _u}{c^{*}}+\nu (\eta _1)^{2}\frac{\psi }{1+i^{*}\gamma }+\nu (\eta _1)\psi \nonumber \\&\left( 1-\frac{1-\alpha }{\sigma }+\frac{1}{1+i^{*}\gamma }\right) -\left( 1-\psi \right) \varepsilon _{dk},\nonumber \\ \end{aligned}$$
(10.47)
$$\begin{aligned} \xi _3(a_\phi )&= -\psi \nu (\eta _1)\left( 1-\frac{1-\alpha }{\sigma }\right) \frac{1+i^{*}}{i^{*}} a_\phi +\left\{ 1-\psi \left[ 1+\nu (\eta _1)\right] \right\} \varepsilon _{dk}\nonumber \\&\quad -2\frac{\psi }{1-\psi }\nu (\eta _1) \left( 1-\frac{1-\alpha }{\sigma }\right) , \end{aligned}$$
(10.48)
$$\begin{aligned} \xi _4(a_\phi )&= 2 (1-\psi )\frac{1+i^{*}}{i^{*}}\left\{ \left( 1+\psi \frac{1-\alpha }{\sigma }\right) \frac{\varepsilon _u}{c^{*}}-\frac{i^{*}\gamma \nu (\eta _1)}{1+i^{*}\gamma }\left[ 1+ \frac{\psi }{1-\psi }\left( 1-\frac{1-\alpha }{\sigma }\right) \right] \right. \nonumber \\&\quad \left. +\frac{\varepsilon _{dk}i^{*}\gamma }{1+i^{*}\gamma }\right\} a_\phi +\left\{ 2\psi \left[ 1+\nu (\eta _1)+\frac{1-\alpha }{\sigma }\right] +\right. \nonumber \\&\quad \left. \frac{1-\psi }{\nu (\eta _1)}\left[ \nu (\eta _1)+\varepsilon _{dk}\right] \left\{ 1-\psi \left[ 1+\nu (\eta _1)\right] \right\} \right\} \frac{\varepsilon _u}{c^{*}}-\frac{\nu (\eta _1)^{2}\psi }{1+i^{*}\gamma }\nonumber \\&\quad -2\nu (\eta _1)\psi \left( 1-\frac{1-\alpha }{\sigma }\right) -\nu (\eta _1)\frac{1+\psi }{1+i^{*}\gamma }+2(1-\psi )\varepsilon _{dk},\end{aligned}$$
(10.49)
$$\begin{aligned} \xi _5(a_\phi )&=\left( 1-\psi \right) \frac{1+i^{*}}{i^{*}}\left\{ \left( 1-\psi \frac{1-\alpha }{\sigma }\right) \frac{\varepsilon _u}{c^{*}}-\frac{\nu (\eta _1)}{1+i^{*}\gamma }\right. \nonumber \\&\left. \quad \left[ 1+\frac{i^{*}\gamma \psi }{1-\psi }\left( 1-\frac{1-\alpha }{\sigma }\right) \right] +\frac{\varepsilon _{dk}i^{*}\gamma }{1+i^{*}\gamma }\right\} a_\phi +\psi \left[ 1+\nu (\eta _1)-\frac{1-\alpha }{\sigma }\right] \frac{\varepsilon _u}{c^{*}}-\frac{\nu (\eta _1)^{2}\psi }{1+i^{*}\gamma }\nonumber \\&\quad -\nu (\eta _1)\psi \left( 1-\frac{1-\alpha }{\sigma }+\frac{1}{1+i^{*}\gamma }\right) +(1-\psi )\varepsilon _{dk}\nonumber \\ \end{aligned}$$
(10.50)

We aim to determine the range of parameter values (\( a_\phi \) and \(\varepsilon _v\)) for which local indeterminacy conditions (i)-(iii) are satisfied. To do this, we must analyze the functions \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\), \(\bar{\varepsilon }_v\) and \(\xi _i\) with \(i=\lbrace 1,2,3,4,5 \rbrace \), then draw \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) in the plane \((a_\phi , \varepsilon _v)\).

We observe that \(\xi _i\) with \(i=\lbrace 1,2,3,4,5 \rbrace \) are linear functions of \(a_\phi \), i.e. \(\xi _i^{a} a_\phi +~\xi _i^{b}\). Note that \(\xi _1^{a}<0\) and \(\xi _3^{a}<0\). Furthermore, there exist \(\eta _1^{\xi _1^{b}}>0\), \(\eta _1^{\xi _2^{a}}>0\), \(\eta _1^{\xi _2^{b}}>0\), \(\eta _1^{\xi _3^{b}}>0\), \(\eta _1^{\xi _4^{a}}>0\), \(\eta _1^{\xi _4^{b}}>0\), \(\eta _1^{\xi _5^{a}}>0\) and \(\eta _1^{\xi _5^{b}}>0\) such that \(\forall \) \(\eta _1<min \lbrace \eta _1^{\xi _1^{b}}, \eta _1^{\xi _2^{a}}, \eta _1^{\xi _2^{b}}, \eta _1^{\xi _3^{b}}, \eta _1^{\xi _4^{a}}, \eta _1^{\xi _4^{b}}, \eta _1^{\xi _5^{a}}, \eta _1^{\xi _5^{b}} \rbrace \equiv \tilde{\eta }_1\), one has \(\xi _1^{b}>0\), \(\xi _2^{a}<0\), \(\xi _2^{b}<0\), \(\xi _3^{b}>0\), \(\xi _4^{a}>0\), \(\xi _4^{b}>0\), \(\xi _5^{a}>0\) and \(\xi _5^{b}>0\). Therefore, we deduce that \(\xi _1(a_\phi )\ge 0\) when \(a_\phi \le \frac{\xi _1^{b}}{\xi _1^{a}}\) and \(\xi _1(a_\phi )<0\) otherwise. \(\xi _2(a_\phi )\ge 0\) when \(a_\phi \le \frac{\xi _2^{b}}{\xi _2^{a}}<0\) and \(\xi _2(a_\phi )< 0\) otherwise. \(\xi _3(a_\phi )\ge 0\) when \(a_\phi \le \frac{\xi _3^{b}}{\xi _3^{a}}\) and \(\xi _3(a_\phi )<0\) otherwise. \(\xi _4(a_\phi )\le 0\) when \(a_\phi \le \frac{\xi _4^{b}}{\xi _4^{a}}<0\) and \(\xi _4(a_\phi )>0\) otherwise. \(\xi _5(a_\phi )\le 0\) when \(a_\phi \le \frac{\xi _5^{b}}{\xi _5^{a}}<0\) and \(\xi _5(a_\phi )>0\) otherwise.

We analyze now \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\), \(\varepsilon _v^{s}\) and \(\bar{\varepsilon }_v\). Suppose that \(\eta _1<min\lbrace \eta _1^{\theta },\tilde{\eta }_1\rbrace \).

First, \(\varepsilon _v^{s}\) does not depend on \(a_\phi \). Second, the different critical and bifurcation values (\(\bar{\varepsilon }_v\), \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\)) are homographic functions of \(a_\phi \). \(\varepsilon _v^{f}\) has a vertical asymptote at \(a_\phi =\frac{\xi _3^{b}}{\xi _3^{a}}\equiv \tilde{a}_\phi >0\). \(\bar{\varepsilon }_v\) and \(\varepsilon _v^{h}\) have the same vertical asymptote at \(a_\phi =\frac{\xi _1^{b}}{\xi _1^{a}}>\tilde{a}_\phi \). The first derivatives of \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) with respect to \(a_{\phi }\) are given by:

$$ \frac{\partial \varepsilon _v^{f}}{\partial a_{\phi }}=\frac{\xi _4^{a}\xi _3^{b}-\xi _4^{b}\xi _3^{a}}{\xi _3(a_\phi )^{2}}>0,\frac{\partial \varepsilon _v^{h}}{\partial a_{\phi }}=\frac{\xi _5^{a}\xi _1^{b}-\xi _5^{b}\xi _1^{a}}{\xi _1(a_\phi )^{2}}>0 \text { and } \frac{\partial \bar{\varepsilon }_v}{\partial a_{\phi }}=-\frac{\xi _2^{a}\xi _1^{b}-\xi _2^{b}\xi _1^{a}}{\xi _1(a_\phi )^{2}}>0.$$

It would be useful to locate the different bifurcation and critical values (\(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\), \(\varepsilon _v^{s}\) and \(\bar{\varepsilon }_v)\) when \(a_\phi =0\). We can note that \(\varepsilon _v^{f}>0\), \(\varepsilon _v^{h}>0\) and \(\bar{\varepsilon }_v>0\) when \(a_\phi =0\). Moreover, \(\varepsilon _v^{s}>0\) if and only if \(\varepsilon _u\in (\tilde{\varepsilon }_u, \varepsilon _u^{s})\), where \(\varepsilon _u>\tilde{\varepsilon }_u\) is required for the second-order conditions, with:

$$\begin{aligned} \tilde{\varepsilon }_u\equiv & {} c^{*}\frac{\nu (\eta _1)^{2}}{\eta _2\left( 1-\psi \right) \left( 1+i^{*}\gamma \right) ^{2}} \end{aligned}$$
(10.51)

The set (\(\tilde{\varepsilon }_u, \varepsilon _u^{s}\)) is nonempty if and only if

$$\begin{aligned} \eta _2(1-\psi )i^{*}\gamma> & {} \nu (\eta _1)\left( 1-\psi \right) +\psi \frac{1-\alpha }{\sigma } \end{aligned}$$
(10.52)

As \(\nu (\eta _1)=i^{*}\eta _1\left( 1-\gamma \right) \), the condition (10.52) holds if

$$\begin{aligned} \eta _1 < \frac{1}{i^{*}\left( 1-\gamma \right) } \frac{\eta _2(1-\psi )i^{*}\gamma -\psi \left( 1-\alpha \right) /\sigma }{1-\psi }\equiv \overline{\overline{\eta }}_1\text { and }\eta _2 > \frac{\psi }{1-\psi }\frac{\left( 1-\alpha \right) /\sigma }{i^{*}\gamma }\equiv \bar{\eta }_2 \end{aligned}$$
(10.53)

Therefore, \(\forall \) \(\eta _1<\overline{\overline{\eta }}_1\) and \(\eta _2>\bar{\eta }_2\), we have \(\tilde{\varepsilon }_u<\varepsilon _u^{s}\). We suppose now that \(\eta _1<\min \lbrace \eta _1^{\theta }, \tilde{\eta }_1, \overline{\overline{\eta }}_1\rbrace \) and \(\eta _2>\bar{\eta }_2\). Note that using the function \(\gamma (k)\) given by Eq. (10.7), \(\eta _2>\bar{\eta }_2\) is equivalent to:

$$\begin{aligned} \epsilon >\frac{1+c}{c-1}\left( \frac{\psi }{1-\psi }\frac{1-\alpha }{\sigma i \gamma }-1\right) \equiv \bar{\epsilon } \end{aligned}$$
(10.54)

where \(\gamma =1-(a+b)/(1+c)\).

We can show that \(\varepsilon _v^{s}<1\). Since \(\varepsilon _{dk}=\frac{\psi }{1-\psi }\frac{1-\alpha }{\sigma }+\eta _2\) and the condition (10.52) is satisfied, we have \(\nu (\eta _1)<\left( 1+i^{*}\gamma \right) \varepsilon _{dk}\). Therefore, \( \varepsilon _v^{s}= \frac{\nu (\eta _1)}{1+i^{*}\gamma }\frac{1}{\varepsilon _{dk}}-\frac{\varepsilon _u}{c^{*}} \frac{\nu (\eta _1)+\varepsilon _{dk}}{\varepsilon _{dk}}\frac{1-\psi }{\nu (\eta _1)}<~1\).

Furthermore, \(\varepsilon _v^{h}<\bar{\varepsilon }_v\) and \(\varepsilon _v^{h}>1\) for a sufficiently small \(\eta _1\). Indeed \(\varepsilon _v^{h}>1\) is equivalent to \(\psi Q(\nu (\eta _1))>0\), where \(Q(\nu (\eta _1))\) is a quadratic polynomial defined on \(\mathbb {R}_{+}\) such that:

$$\begin{aligned} Q(\nu (\eta _1))=&-\frac{\nu (\eta _1)^{2}}{1+i^{*}\gamma } +\nu (\eta _1)\left[ \frac{\varepsilon _u}{c^{*}}-\left( 1-\frac{1-\alpha }{\sigma }+\frac{1}{1+i\gamma }\right) \right. \\&+ \left. \varepsilon _{dk}+\frac{1-(1-\alpha )/\sigma }{1-\psi }\right] +\left( 1-\frac{1-\alpha }{\sigma }\right) \frac{\varepsilon _u}{c^{*}} \end{aligned}$$

\(Q(\nu (\eta _1))\) is a concave function with \(Q(\nu (0))>0\). As a consequence, there is a threshold \(\hat{\eta }_1>0\) such that \(\forall \eta _1<\hat{\eta }_1\), \( Q(\nu (\eta _1))>0\).

Concerning \(\varepsilon _v^{f}\), we can show that \(\bar{\varepsilon }_v<\varepsilon _v^{f}\) for \(\eta _1\) small enough. Note that \(\varepsilon _v^{f}>\xi _4^{b}/\xi _1^{b}\). \(\xi _4^{b}/\xi _1^{b}>\bar{\varepsilon }_v\) is satisfied if \(-\nu (\eta _1) \left[ \psi \left( 1-\frac{1-\alpha }{\sigma }\right) +\frac{1}{1+i^{*}\gamma }\right] +\left( 1-\psi \right) \varepsilon _{dk}>0\). Therefore, there exists \(\underline{\eta }_1>0\) such that \(\forall \) \(\eta _1<\underline{\eta }_1\), this inequality is satisfied. Hence, \(\forall \) \(\eta _1<\underline{\eta }_1\), \(\bar{\varepsilon }_v<\varepsilon _v^{f}\).

Therefore, \(\forall \) \(\eta _1<\min \lbrace \eta _1^{\theta }, \tilde{\eta }_1, \overline{\overline{\eta }}_1,\hat{\eta }_1,\underline{\eta }_1 \rbrace \), one has \(\varepsilon _v^{s}<1<\varepsilon _v^{h}<\bar{\varepsilon }_v<\varepsilon _v^{f}\) when \(a_\phi =0.\) Moreover, we can show that there exists \(\eta _1^{\prime }>0\) such that \(\forall \) \(\eta _1<\eta _1^{\prime }\), \(\varepsilon _v^{s}<\varepsilon _v^{h}<\bar{\varepsilon }_v<\varepsilon _v^{f}\) when \(a_\phi =-1\). For the rest of the proof, we assume that \(\eta _1<\min \lbrace \eta _1^{\theta }, \tilde{\eta }_1, \overline{\overline{\eta }}_1,\hat{\eta }_1,\underline{\eta }_1, \eta _1^{\prime }\rbrace \).

Recall that \(a_\phi \) is defined on \((-\infty , -1) \cup [0, +\infty )\). At this stage of the proof, we can state by analyzing \(1-T+D\), \(1+T+D\) and \(1-D\) given by Eqs. (10.41)–(10.43) that if \(a_\phi \in (-\infty , -1)\), local indeterminacy occurs when \(\varepsilon _v<min \lbrace \bar{\varepsilon }_v, \varepsilon _v^{f}, \varepsilon _v^{h}, \varepsilon _v^{s}\rbrace \) or when \(\varepsilon _v> max \lbrace \bar{\varepsilon }_v, \varepsilon _v^{f}, \varepsilon _v^{h}, \varepsilon _v^{s}\rbrace .\) From the previous results, we deduce that if \(a_\phi \in [0,\tilde{a}_\phi )\), local indeterminacy occurs when \(\varepsilon _v<\varepsilon _v^{s}\) or when \(\varepsilon _v>\varepsilon _v^{f}\). Finally, if \(a_\phi >\tilde{a}_\phi \), local indeterminacy occurs when \(\varepsilon <\varepsilon _v^{s}\). For the case \(a_\phi \in (-\infty , -1)\), we should determine the location of \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\), \(\varepsilon _v^{s}\) and \(\bar{\varepsilon }_v\) in the plane \((a_\phi , \varepsilon _v).\)

The functions \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) are continuous and monotone increasing on \(a_\phi \in (-\infty , -1)\). We can show that the graph of these functions cross the horizonntal axis on \(a_\phi \in (-\infty , -1)\). Let introduce the different following points \(a_\phi ^{\xi _2}\), \(a_\phi ^{\xi _4}\) and \(a_\phi ^{\xi _5}\), which corresponds to the points at which \(\bar{\varepsilon }_v\), \( \varepsilon _v^{f}\) and \(\varepsilon _v^{h}\) cross the horizontal axis. \(a_{\phi }^{\xi _2}\) is defined by \(\bar{\varepsilon }_v=0\) such that \(a_\phi ^{\xi _2}=-\frac{\xi _2^{b}}{\xi _2^{a}}<0\). \(a_\phi ^{\xi _4}\) is defined by \(\varepsilon _v^{f}=0\) such that \(a_\phi ^{\xi _4}=-\frac{\xi _4^{b}}{\xi _4^{a}}<0\). \(a_\phi ^{\xi _5}\) is defined by \(\varepsilon _v^{h}=0\) such that \(a_\phi ^{\xi _5}=-\frac{\xi _5^{b}}{\xi _5^{a}}<0\).

After some algebra, we can show that since \(\psi <1/(1+i^{*}\gamma )\), there exists \(\eta _1^{a}>0\) such that \(\forall \) \(\eta _1<\eta _1^{a}\), \(a_\phi ^{\xi _5}<a_\phi ^{\xi _2}\). Furthermore, either \(a_\phi ^{\xi _2}<a_\phi ^{\xi _4}\) \(\forall \) \(\eta _1>0\) or there exists \(\eta _1^{b}\) such that \(\forall \) \(\eta _1<\eta _1^{b}>0\), \(a_\phi ^{\xi _2}<a_\phi ^{\xi _4}\). Hence, if \(\eta _1<min \lbrace \eta _1^{a}, \eta _1^{b}, \eta _1^{\theta }, \tilde{\eta }_1, \overline{\overline{\eta }}_1,\hat{\eta }_1,\underline{\eta }_1, \eta _1^{\prime } \rbrace \), one has \(a_\phi ^{\xi _5}<a_\phi ^{\xi _2}< a_\phi ^{\xi _4}<0\).

Let \(\eta _1^{\prime \prime }=min \lbrace \eta _1^{a}, \eta _1^{b}, \eta _1^{\theta }, \tilde{\eta }_1, \overline{\overline{\eta }}_1,\hat{\eta }_1,\underline{\eta }_1, \eta _1^{\prime } \rbrace \). For the rest of the proof, we suppose that \(\eta _1<\eta _1^{\prime \prime }\).

Since the functions \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) are continuous and monotone increasing on \((-\infty , -1) \cup [0, \tilde{a}_\phi )\), we can now locate \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) in the plane \((a_\phi , \varepsilon _v).\)

Let \(\hat{a}_\phi \equiv a_\phi ^{\xi _4}\). Since \(\psi <1/(1+i^{*}\gamma ),\) \(a_\phi ^{\xi ^{5}}<a_\phi ^{\xi _2}< \hat{a}_\phi \). Using the expressions of \(1-T+D\), \(1+T+D\) and \(1-D\) given by Eqs. (10.41)–(10.43), we state that if \(a_\phi \in (-\infty , \hat{a}_\phi )\), local indeterminacy occurs when \(\varepsilon _v>max \lbrace \varepsilon _v^{f}, \varepsilon _v^{h}, \varepsilon _v^{s} \rbrace .\) If \(a_\phi \in [\hat{a}_\phi , -1)\cup [0,\tilde{a}_\phi )\), local indeterminacy occurs when \(\varepsilon _v<min\lbrace \varepsilon _v^{f}, \varepsilon _v^{s} \rbrace \) or when \(\varepsilon _v>max \lbrace \varepsilon _v^{f}, \varepsilon _v^{h}, \varepsilon _v^{s} \rbrace .\)

We have shown that \(\varepsilon _v^{s}\) can be positive. In such a case, it would be useful to determine when \(\varepsilon _v^{f}\), \(\varepsilon _v^{h}\) and \(\bar{\varepsilon }_v\) cross \(\varepsilon _v^{s}\). Suppose that \(\varepsilon _v^{s}>0\). \(\varepsilon _v^{h}=\varepsilon _v^{s}\) when \(a_\phi = - \left( \varepsilon _v^{s}\xi _1^{b}-\xi _5^{b}\right) /(\varepsilon _v^{s}\xi _1^{a}-\xi _5^{a})\equiv a_\phi ^{1} <0\), \(\bar{\varepsilon }_v=\varepsilon _v^{s}\) when \(a_\phi = -\left( \varepsilon _v^{s}\xi _1^{b}+\xi _2^{b}\right) /(\varepsilon _v^{s}\xi _1^{a}+\xi _2^{a})\equiv a_\phi ^{2}<0\), and \(\varepsilon _v^{f}=\varepsilon _v^{s}\) when \(a_\phi = -\left( \varepsilon _v^{s}\xi _3^{b}-\xi _4^{b}\right) /(\varepsilon _v^{s}\xi _3^{a}-\xi _4^{a})\equiv a_\phi ^{3}<0\).

Because \(\psi <1/(1+i^{*}\gamma )\), we can show after some algebra that either \(a_\phi ^{1}<a_\phi ^{2}\) \(\forall \) \(\eta _1>0\) or there exists \(\eta _1^{e}>0\) such that \(\forall \) \(\eta _1<\eta _1^{e}\), \(a_\phi ^{1}<a_\phi ^{2}\). It is difficult to determine the location of \(a_\phi ^{3}\). Nevertheless, if \(a_\phi ^{1}<a_\phi ^{3}<a_\phi ^{2}<0\) or if \(a_\phi ^{3}<a_\phi ^{1}<a_\phi ^{2}<0\), we get \(1-T+D<0,\) \(1+T+D<0\) and \(D>1\) for some values of \(\varepsilon _v\). Since this is not feasible, we can eliminate these configurations. Therefore, if \(\eta _1<min \lbrace \eta _1^{e}, \eta _1^{\prime \prime } \rbrace \), one has \(a_\phi ^{1}<a_\phi ^{2}<a_\phi ^{3}<0\).

Let \(\bar{\eta }_1=min \lbrace \eta _1^{e}, \eta _1^{\prime \prime } \rbrace \). All conditions on \(\eta _1\) required in this proof are satisfied when \(\eta _1<\bar{\eta }_1\). We can now derive the dynamic properties of the model. The properties of local dynamics are depicted by Fig. 10.1.Footnote 19 Grey areas in Fig. 10.1 correspond to the different regions in which the steady state is a sink, in other words to the indeterminacy regions.

We deduce Proposition 3 and Corollary 1 from Fig. 10.1. Since \(a_\phi =\phi /(1-\phi )\) is increasing with \(\phi \), we can derive Corollary 2 from Proposition 3 and Fig. 10.1.    \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clain-Chamosset-Yvrard, L., Seegmuller, T. (2017). The Stabilizing Virtues of Monetary Policy on Endogenous Bubble Fluctuations. In: Nishimura, K., Venditti, A., Yannelis, N. (eds) Sunspots and Non-Linear Dynamics. Studies in Economic Theory, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-44076-7_10

Download citation

Publish with us

Policies and ethics