Abstract
Though searching is already the most frequently used application of information technology today, similarity approach to searching is increasingly playing more and more important role in construction of new search engines. In the last twenty years, the technology has matured and many centralized, distributed, and even peer-to-peer architectures have been proposed. However, the use of similarity searching in numerous potential applications is still a challenge. In the talk, four research directions in developing similarity search applications at Masaryk University DISA laboratory are to be discussed. First, we concentrate on accelerating large-scale face recognition applications and continue with generic image annotation task for retrieval purposes. In the second half, we focus on data stream processing applications and finish the talk with the ambition topic of content-based retrieval in human motion-capture data. Applications will be illustrated by online prototype implementations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - The Concepts and Technology Behind Search, 2nd edn. ACM Press Books, Pearson (2011)
Batko, M., Botorek, J., BudÃková, P., Zezula, P.: Content-based annotation and classification framework: a general multi-purpose approach. In: 17th International Database Engineering & Applications Symposium, IDEAS 2013, Barcelona, Spain - 09–11 October 2013, pp. 58–67 (2013)
Budikova, P., Batko, M., Botorek, J., Zezula, P.: Search-based image annotation: extracting semantics from similar images. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 327–339. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24027-5_36
Chávez, E., Navarro, G., Baeza-Yates, R., MarroquÃn, J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)
Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB. pp. 426–435. Morgan Kaufmann (1997)
Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation of motion capture data for similarity search. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 250–255. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8_24
Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)
Mera, D., Batko, M., Zezula, P.: Speeding up the multimedia feature extraction: a comparative study on the big data approach. Multimedia Tools and Applications, pp. 1–21 (2016). http://dx.doi.org/10.1007/s11042-016-3415-1
Nalepa, F., Batko, M., Zezula, P.: Model for performance analysis of distributed stream processing applications. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 520–533. Springer, Heidelberg (2015)
Nalepa, F., Batko, M., Zezula, P.: Enhancing similarity search throughput by dynamic query reordering. In: Database and Expert Systems Applications - 27th International Conference, DEXA 2016, Porto, Portugal, September 5–8, p. 15 (2016)
Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by an image retrieval application. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA, USA, July 19–23. p. 840 (2009)
Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015, pp. 1039–1040 (2015)
Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)
O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006)
Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)
Samet, H.: Foundations of Multidimensional and Metric Data Structures. Series in Data Management Systems. Morgan Kaufmann, San Francisco (2006)
Sedmidubsky, J., Mic, V., Zezula, P.: Face image retrieval revisited. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 204–216. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8_19
Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer, Heidelberg (2013)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 1–9 (2015)
Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-motion retrieval applications. Computer Animation and Virtual Worlds (2015)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)
Acknowledgments
This research was supported by the Czech Science Foundation project number P103/12/G084.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zezula, P. (2016). Similarity Searching for Database Applications. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds) Advances in Databases and Information Systems. ADBIS 2016. Lecture Notes in Computer Science(), vol 9809. Springer, Cham. https://doi.org/10.1007/978-3-319-44039-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-44039-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44038-5
Online ISBN: 978-3-319-44039-2
eBook Packages: Computer ScienceComputer Science (R0)