Skip to main content

Similarity Searching for Database Applications

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9809))

Abstract

Though searching is already the most frequently used application of information technology today, similarity approach to searching is increasingly playing more and more important role in construction of new search engines. In the last twenty years, the technology has matured and many centralized, distributed, and even peer-to-peer architectures have been proposed. However, the use of similarity searching in numerous potential applications is still a challenge. In the talk, four research directions in developing similarity search applications at Masaryk University DISA laboratory are to be discussed. First, we concentrate on accelerating large-scale face recognition applications and continue with generic image annotation task for retrieval purposes. In the second half, we focus on data stream processing applications and finish the talk with the ambition topic of content-based retrieval in human motion-capture data. Applications will be illustrated by online prototype implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - The Concepts and Technology Behind Search, 2nd edn. ACM Press Books, Pearson (2011)

    Google Scholar 

  2. Batko, M., Botorek, J., Budíková, P., Zezula, P.: Content-based annotation and classification framework: a general multi-purpose approach. In: 17th International Database Engineering & Applications Symposium, IDEAS 2013, Barcelona, Spain - 09–11 October 2013, pp. 58–67 (2013)

    Google Scholar 

  3. Budikova, P., Batko, M., Botorek, J., Zezula, P.: Search-based image annotation: extracting semantics from similar images. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 327–339. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24027-5_36

    Chapter  Google Scholar 

  4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB. pp. 426–435. Morgan Kaufmann (1997)

    Google Scholar 

  6. Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation of motion capture data for similarity search. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 250–255. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8_24

    Chapter  Google Scholar 

  7. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)

    Article  Google Scholar 

  8. Mera, D., Batko, M., Zezula, P.: Speeding up the multimedia feature extraction: a comparative study on the big data approach. Multimedia Tools and Applications, pp. 1–21 (2016). http://dx.doi.org/10.1007/s11042-016-3415-1

  9. Nalepa, F., Batko, M., Zezula, P.: Model for performance analysis of distributed stream processing applications. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 520–533. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Nalepa, F., Batko, M., Zezula, P.: Enhancing similarity search throughput by dynamic query reordering. In: Database and Expert Systems Applications - 27th International Conference, DEXA 2016, Porto, Portugal, September 5–8, p. 15 (2016)

    Google Scholar 

  11. Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by an image retrieval application. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA, USA, July 19–23. p. 840 (2009)

    Google Scholar 

  12. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015, pp. 1039–1040 (2015)

    Google Scholar 

  13. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)

    Google Scholar 

  14. O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006)

    Google Scholar 

  15. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)

    Book  Google Scholar 

  16. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Series in Data Management Systems. Morgan Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  17. Sedmidubsky, J., Mic, V., Zezula, P.: Face image retrieval revisited. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 204–216. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8_19

    Chapter  Google Scholar 

  18. Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 1–9 (2015)

    Google Scholar 

  20. Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-motion retrieval applications. Computer Animation and Virtual Worlds (2015)

    Google Scholar 

  21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation project number P103/12/G084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zezula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zezula, P. (2016). Similarity Searching for Database Applications. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds) Advances in Databases and Information Systems. ADBIS 2016. Lecture Notes in Computer Science(), vol 9809. Springer, Cham. https://doi.org/10.1007/978-3-319-44039-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44039-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44038-5

  • Online ISBN: 978-3-319-44039-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics