Advertisement

Similarity Searching for Database Applications

  • Pavel ZezulaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9809)

Abstract

Though searching is already the most frequently used application of information technology today, similarity approach to searching is increasingly playing more and more important role in construction of new search engines. In the last twenty years, the technology has matured and many centralized, distributed, and even peer-to-peer architectures have been proposed. However, the use of similarity searching in numerous potential applications is still a challenge. In the talk, four research directions in developing similarity search applications at Masaryk University DISA laboratory are to be discussed. First, we concentrate on accelerating large-scale face recognition applications and continue with generic image annotation task for retrieval purposes. In the second half, we focus on data stream processing applications and finish the talk with the ambition topic of content-based retrieval in human motion-capture data. Applications will be illustrated by online prototype implementations.

Keywords

Query Image Image Annotation Motion Capture Data Candidate Keyword Probable Keyword 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Czech Science Foundation project number P103/12/G084.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - The Concepts and Technology Behind Search, 2nd edn. ACM Press Books, Pearson (2011)Google Scholar
  2. 2.
    Batko, M., Botorek, J., Budíková, P., Zezula, P.: Content-based annotation and classification framework: a general multi-purpose approach. In: 17th International Database Engineering & Applications Symposium, IDEAS 2013, Barcelona, Spain - 09–11 October 2013, pp. 58–67 (2013)Google Scholar
  3. 3.
    Budikova, P., Batko, M., Botorek, J., Zezula, P.: Search-based image annotation: extracting semantics from similar images. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 327–339. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24027-5_36 CrossRefGoogle Scholar
  4. 4.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)CrossRefGoogle Scholar
  5. 5.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB. pp. 426–435. Morgan Kaufmann (1997)Google Scholar
  6. 6.
    Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation of motion capture data for similarity search. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 250–255. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25087-8_24 CrossRefGoogle Scholar
  7. 7.
    Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)CrossRefGoogle Scholar
  8. 8.
    Mera, D., Batko, M., Zezula, P.: Speeding up the multimedia feature extraction: a comparative study on the big data approach. Multimedia Tools and Applications, pp. 1–21 (2016). http://dx.doi.org/10.1007/s11042-016-3415-1
  9. 9.
    Nalepa, F., Batko, M., Zezula, P.: Model for performance analysis of distributed stream processing applications. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 520–533. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Nalepa, F., Batko, M., Zezula, P.: Enhancing similarity search throughput by dynamic query reordering. In: Database and Expert Systems Applications - 27th International Conference, DEXA 2016, Porto, Portugal, September 5–8, p. 15 (2016)Google Scholar
  11. 11.
    Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by an image retrieval application. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA, USA, July 19–23. p. 840 (2009)Google Scholar
  12. 12.
    Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015, pp. 1039–1040 (2015)Google Scholar
  13. 13.
    Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Series in Data Management Systems. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  17. 17.
    Sedmidubsky, J., Mic, V., Zezula, P.: Face image retrieval revisited. In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 204–216. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25087-8_19 CrossRefGoogle Scholar
  18. 18.
    Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 1–9 (2015)Google Scholar
  20. 20.
    Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-motion retrieval applications. Computer Animation and Virtual Worlds (2015)Google Scholar
  21. 21.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations