Skip to main content

Surgical Considerations and Emergencies in the Cancer Patient Receiving Immunotherapy

  • Chapter
  • First Online:
  • 935 Accesses

Abstract

The increasing clinical use of immunotherapies among various malignancies, predominated by immune checkpoint inhibitors, has increased the potential for unique toxicities a practicing surgeon should be aware of. These manifestations are predominated by gastrointestinal toxicities due to immune cell infiltration which mimic autoimmune conditions such as inflammatory bowel disease. Patients may present with diarrhea, gastrointestinal bleeding, and abdominal pain typically managed with immunosuppressive strategies such as high-dose corticosteroids. However, cases refractory to such measures or the rare cases presenting with up-front gastrointestinal perforation require urgent surgical intervention. The goal of this chapter is to provide an overview of immunotherapeutic strategies, with a focus on immune checkpoint inhibitors, and their respective gastrointestinal toxicities reported in the literature, and provide guidelines to assist the practicing surgeon in this rapidly growing field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas L. Delayed hypersensitivity in health and disease. In: Lawrence HS, editor. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper; 1959. p. 529–32.

    Google Scholar 

  4. Priestman TJ. Interferons and cancer therapy. J Pathol. 1983;141:287–95.

    Article  CAS  PubMed  Google Scholar 

  5. Kirkwood JM, Ernstoff MS. Interferons in the treatment of human cancer. J Clin Oncol. 1984;2:336–52.

    CAS  PubMed  Google Scholar 

  6. Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709.

    Article  CAS  PubMed  Google Scholar 

  7. Mertelsmann R, Welte K. Human interleukin 2: molecular biology, physiology and clinical possibilities. Immunobiology. 1986;172:400–19.

    Article  CAS  PubMed  Google Scholar 

  8. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    CAS  PubMed  Google Scholar 

  9. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 2013;13:525–41.

    Article  CAS  PubMed  Google Scholar 

  11. Coffin RS. From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol. 2015;13:93–100.

    Article  CAS  PubMed  Google Scholar 

  12. Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015 Sep 1;33(25):2780–8.

    Google Scholar 

  13. Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342:1432–3.

    CAS  Google Scholar 

  14. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  15. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.

    Article  CAS  PubMed  Google Scholar 

  16. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183:2533–40.

    Article  CAS  PubMed  Google Scholar 

  17. Chambers CA, Krummel MF, Boitel B, et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev. 1996;153:27–46.

    Article  CAS  PubMed  Google Scholar 

  18. Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282:2263–6.

    Article  CAS  PubMed  Google Scholar 

  19. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229:12–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  24. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66:3381–5.

    Article  CAS  PubMed  Google Scholar 

  25. Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 2010;16:399–403.

    Article  CAS  PubMed  Google Scholar 

  26. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22.

    Article  CAS  PubMed  Google Scholar 

  29. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17:133–44.

    Article  CAS  PubMed  Google Scholar 

  31. Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19:4917–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baixeras E, Huard B, Miossec C, et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med. 1992;176:327–37.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki T, Dierich A, Benoist C, Mathis D. LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice. Int Immunol. 1996;8:725–9.

    Article  CAS  PubMed  Google Scholar 

  34. Bettini M, Szymczak-Workman AL, Forbes K, et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol. 2011;187:3493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.

    Article  CAS  PubMed  Google Scholar 

  37. Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med. 2012;18:1394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

    Article  CAS  PubMed  Google Scholar 

  40. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lefranc M-P, Ge L. The immunoglobulin factsbook. San Diego: Academic Press; 2001.

    Google Scholar 

  43. Laurent S, Queirolo P, Boero S, et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J Transl Med. 2013;11:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6:230ra45.

    Article  PubMed  Google Scholar 

  45. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31:616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribas A, Hauschild A, Kefford R. Reply to K.S. Wilson et al. J Clin Oncol. 2013;31:2836–7.

    Article  PubMed  Google Scholar 

  48. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.

    Article  CAS  PubMed  Google Scholar 

  50. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.

    Article  CAS  PubMed  Google Scholar 

  53. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  54. Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol. 2015;42:474–83.

    Article  CAS  PubMed  Google Scholar 

  55. Stewart R, Morrow M, Hammond SA, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3:1052–62.

    Article  CAS  PubMed  Google Scholar 

  56. Segal NH, Hamid O, Hwu W, et al. 1058PD a phase i multi-arm dose-expansion study of the anti-programmed cell death-ligand-1 (PD-L1) antibody MEDI4736: preliminary data. Ann Oncol. 2014;25:iv365.

    Google Scholar 

  57. Antonia S, Iannotti NO, Salamat MA, et al. 16TiP a phase 3, randomised, double-blind, placebo-controlled, international study of MEDI4736 in patients with locally advanced, unresectable NSCLC (Stage III) who have not progressed following platinum-based, concurrent chemoradiation therapy (PACIFIC). Ann Oncol. 2014;25:vi6.

    Article  Google Scholar 

  58. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glenn F, Grafe Jr WR. Surgical complications of adrenal steroid therapy. Ann Surg. 1967;165:1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sterioff S, Orringer MB, Cameron JL. Colon perforations associated with steroid therapy. Surgery. 1974;75:56–8.

    CAS  PubMed  Google Scholar 

  62. Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006;24:2283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dilling P, Walczak J, Pikiel P, Kruszewski WJ. Multiple colon perforation as a fatal complication during treatment of metastatic melanoma with ipilimumab—case report. Pol Przegl Chir. 2014;86:94–6.

    PubMed  Google Scholar 

  64. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  65. Eggermont AMM, Chiarion-Sileni V, Grob J-J, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16:522–30.

    Article  CAS  PubMed  Google Scholar 

  66. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  67. Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.

    Article  CAS  PubMed  Google Scholar 

  68. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  Google Scholar 

  69. Phan GQ, Weber JS, Sondak VK. CTLA-4 blockade with monoclonal antibodies in patients with metastatic cancer: surgical issues. Ann Surg Oncol. 2008;15:3014–21.

    Article  PubMed  Google Scholar 

  70. Minor DR, Chin K, Kashani-Sabet M. Infliximab in the treatment of anti-CTLA4 antibody (ipilimumab) induced immune-related colitis. Cancer Biother Radiopharm. 2009;24:321–5.

    Article  CAS  PubMed  Google Scholar 

  71. Johnston RL, Lutzky J, Chodhry A, Barkin JS. Cytotoxic T-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig Dis Sci. 2009;54:2538–40.

    Article  CAS  PubMed  Google Scholar 

  72. Pages C, Gornet JM, Monsel G, et al. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res. 2013;23:227–30.

    Article  CAS  PubMed  Google Scholar 

  73. Merrill SP, Reynolds P, Kalra A, Biehl J, Vandivier RW, Mueller SW. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically Ill patient. Ann Pharmacother. 2014;48:806–10.

    Article  PubMed  Google Scholar 

  74. Pham T, Bachelez H, Berthelot JM, et al. TNF alpha antagonist therapy and safety monitoring. Joint Bone Spine. 2011;78 Suppl 1:15–185.

    Article  PubMed  Google Scholar 

  75. Burdine L, Lai K, Laryea JA. Ipilimumab-induced colonic perforation. J Surg Case Rep. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Chao M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chao, J., Fakih, M. (2017). Surgical Considerations and Emergencies in the Cancer Patient Receiving Immunotherapy. In: Fong, Y., Kauffmann, R., Marcinkowski, E., Singh, G., Schoellhammer, H. (eds) Surgical Emergencies in the Cancer Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-44025-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44025-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44023-1

  • Online ISBN: 978-3-319-44025-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics