Skip to main content

Emergency Department Ultrasound as a Diagnostic and Therapeutic Guide

  • Chapter
  • First Online:
  • 1106 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The clinical role of ultrasound (US) has changed rapidly over the past few decades. As technology has improved, it has allowed US machines to become portable with improving quality of images. The most dramatic change has been in the emergency and critical care settings where it provides immediately interpretable and reproducible images at bedside, allowing answers to time-sensitive questions. As the use of ultrasound expands, it is likely that it will be used at bedside throughout hospitals to perform rapid evaluations and monitor response to treatment. Its advantages include its noninvasive nature, lack of ionizing radiation, and cost-effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson KL, Jenq KY, Fields JM, Panebianco NL, Dean AJ. Point-of-care ultrasound diagnoses acute decompensated heart failure in the ED regardless of examination findings. Am J Emerg Med. 2014;32(4):385–8.

    Article  PubMed  Google Scholar 

  2. Soyuncu S, Cete Y, Bozan H, et al. Accuracy of physical and ultrasonographic examinations by emergency physicians for the early diagnosis of intraabdominal hemorrhage in blunt abdominal trauma. Injury. 2007;38:564e9.

    Article  Google Scholar 

  3. Ferre RM, Chioncel O, Pang PS, Lang RM, Gheorghiade M, Collins SP. Acute heart failure: the role of focused emergency cardiopulmonary ultrasound in identification and early management. Eur J Heart Fail. 2015;17(12):1223–7.

    Article  PubMed  Google Scholar 

  4. American College of Emergency Physicians. Emergency ultrasound guidelines. Available at: http://www.acep.org; 2008. Accessed 28 Feb 2016.

  5. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr. 2010;23(12):1225–30.

    Article  PubMed  Google Scholar 

  6. Kimura BJ, Bocchicchio M, Willis CL, et al. Screening cardiac ultrasonographic examination in patients with suspected cardiac disease in the emergency department. Am Heart J. 2001;142(2):324–30.

    Article  CAS  PubMed  Google Scholar 

  7. Sabia P, Abbott RD, Afrookteh A, Keller MW, Touchstone DA, Kaul S. Importance of two-dimensional echocardiographic assessment of left ventricular systolic function in patients presenting to the emergency room with cardiac-related symptoms. Circulation. 1991;84:1615–24.

    Article  CAS  PubMed  Google Scholar 

  8. Jones AE, Tayal VS, Kline JA. Focused training of emergency medicine residents in goal-directed echocardiography: a prospective study. Acad Emerg Med. 2003;10:1054–8.

    Article  PubMed  Google Scholar 

  9. Moore CL, Rose GA, Tayal VS, Sullivan DM, Arrowood JA, Kline JA. Determination of left ventricular function by emergency physician echocardiography of hypotensive patients. Acad Emerg Med. 2002;9:186–93.

    Article  PubMed  Google Scholar 

  10. Foster E, Cahalan MK. The search for intelligent quantitation in echocardiography: “eyeball”, “trackball” and beyond. J Am Coll Cardiol. 1993;22:848–50.

    Article  CAS  PubMed  Google Scholar 

  11. Gudmundsson P, Rydberg E, Winter R, Willenheimer R. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol. 2005;101:209–12.

    Article  PubMed  Google Scholar 

  12. Unluer EE, Karagoz A, Akoglu H, Bayata S. Visual estimation of bedside echocardiographic ejection fraction by emergency physicians. West J Emerg Med. 2014;15:221–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Randazzo MR, Snoey ER, Levitt MA, et al. Accuracy of emergency physician assessment of left ventricular ejection fraction and central venous pressure using echocardiography. Acad Emerg Med. 2003;10:973e7.

    Article  Google Scholar 

  14. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wachter R, Meihorst D, Hasenfuss G. The majority of patients presenting with dyspnea in primary care has heart failure with preserved ejection fraction. J Am Coll Cardiol. 2015;65(10_S) 399–406. doi:10.1016/S0735-1097(15)60994-9.

  16. Holst JM, Kilker BA, Wright S, Hoffmann B. Heart failure with preserved ejection fraction: echocardiographic VALVE protocol for emergency physicians. Eur J Emerg Med. 2014;21(6):394–402.

    Article  PubMed  Google Scholar 

  17. Ehrman RR, Russell FM, Ansari AH, et al. Can emergency physicians diagnose and correctly classify diastolic dysfunction using bedside echocardiography? Am J Emerg Med. 2015;33(9):1178–83.

    Article  PubMed  Google Scholar 

  18. Unlüer EE, Bayata S, Postaci N, et al. Limited bedside echocardiography by emergency physicians for diagnosis of diastolic heart failure. Emerg Med J. 2012;29(4):280–3.

    Article  PubMed  Google Scholar 

  19. Ramasubbu K, Deswal A, Chan W, Aguilar D, Bozkurt B. Echocardiographic changes during treatment of acute decompensated heart failure: insights from the ESCAPE trial. J Card Fail. 2012;18(10):792–8.

    Article  PubMed  Google Scholar 

  20. Weiland DS, Konstam MA, Salem DN, et al. Contribution of reduced mitral regurgitant volume to vasodilator effect in severe left ventricular failure secondary to coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1986;58:1046e50.

    Article  Google Scholar 

  21. Firth BG, Dehmer GJ, Markham Jr RV, Willerson JT, Hillis LD. Assessment of vasodilator therapy in patients with severe congestive heart failure: limitations of measurements of left ventricular ejection fraction and volumes. Am J Cardiol. 1982;50:954e9.

    Article  Google Scholar 

  22. Massie B, Kramer BL, Topic N, Henderson SG. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise. Circulation. 1982;65:1374e81.

    Google Scholar 

  23. Shah PK, Abdulla A, Pichler M, et al. Effects of nitroprusside-induced reduction of elevated preload and afterload on global and regional ventricular function in acute myocardial infarction. Am Heart J. 1983;105:531e42.

    Google Scholar 

  24. Stevenson LW, Bellil D, Grover-McKay M, et al. Effects of afterload reduction (diuretics and vasodilators) on left ventricular volume and mitral regurgitation in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1987;60:654e8.

    Google Scholar 

  25. Kramer BL, Massie BM, Topic N. Controlled trial of captopril in chronic heart failure: a rest and exercise hemodynamic study. Circulation. 1983;67:807e16.

    Article  Google Scholar 

  26. Hindman MC, Slosky DA, Peter RH, Newman GE, Jones RH, Wallace AG. Rest and exercise hemodynamic effects of oral hydralazine in patients with coronary artery disease and left ventricular dysfunction. Circulation. 1980;61:751e8.

    Article  Google Scholar 

  27. Blehar D, Dickman E, Gaspari R. Identification of congestive heart failure via respiratory variation of inferior vena cava diameter. Am J Emerg Med. 2009;27:71–5.

    Article  PubMed  Google Scholar 

  28. Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134:117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fields JM, Lee PA, Jenq KY, Mark DG, Panebianco NL, Dean AJ. The interrater reliability of inferior vena cava ultrasound by bedside clinician sonographers in emergency department patients. Acad Emerg Med. 2011;18(1):98–101.

    Article  PubMed  Google Scholar 

  30. Akkaya A, Yesilaras M, Aksay E, Sever M, Atilla OD. The interrater reliability of ultrasound imaging of the inferior vena cava performed by emergency residents. Am J Emerg Med. 2013;31(10):1509–11.

    Article  PubMed  Google Scholar 

  31. Saul T, Lewiss RE, Langsfeld A, Radeos MS, Del rios M. Inter-rater reliability of sonographic measurements of the inferior vena cava. J Emerg Med. 2012;42(5):600–5.

    Article  PubMed  Google Scholar 

  32. Milan A, Magnino C, Veglio F. Echocardiographic indexes for the non-invasive evaluation of pulmonary hemodynamics. J Am Soc Echocardiogr. 2010;23:225–39; quiz 332–224.

    Article  PubMed  Google Scholar 

  33. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pudil R, Tichy M, Praus R, Bláha V, Vojácek J. NT-proBNP and echocardiographic parameters in patients with acute heart failure. Acta Medica (Hradec Kralove). 2007;50:51–6.

    CAS  Google Scholar 

  35. Kimura BJ, Shaw DJ, Agan DL, Amundson SA, Ping AC, DeMaria AN. Value of a cardiovascular limited ultrasound examination using a hand-carried ultrasound device on clinical management in an outpatient medical clinic. Am J Cardiol. 2007;100:321–5.

    Article  PubMed  Google Scholar 

  36. Stein JH, Neumann A, Marcus RH. Comparison of estimates of right atrial pressure by physical examination and echocardiography in patients with congestive heart failure and reasons for discrepancies. Am J Cardiol. 1997;80:1615–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jardin F, Vieillard-Baron A. Ultrasonographic examination of the vena cava. Intensive Care Med. 2006;32:203–6.

    Article  PubMed  Google Scholar 

  38. Brennan J, Blair J, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20:857–61.

    Article  PubMed  Google Scholar 

  39. Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345:574–81.

    Article  CAS  PubMed  Google Scholar 

  40. Drazner MH, Hellkamp AS, Leier CV, Shah MR, Miller LW, Russell SD, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leidi F, Casella F, Cogliati C. Bedside lung ultrasound in the evaluation of acute decompensated heart failure. Intern Emerg Med. 2016;11:597–601.

    Article  PubMed  Google Scholar 

  42. Besli F, Kecebas M, Caliskan S, Dereli S, Baran I, Turker Y. The utility of inferior vena cava diameter and the degree of inspiratory collapse in patients with systolic heart failure. Am J Emerg Med. 2015;33(5):653–7.

    Article  PubMed  Google Scholar 

  43. Miller JB, Sen A, Strote SR, et al. Inferior vena cava assessment in the bedside diagnosis of acute heart failure. Am J Emerg Med. 2012;30(5):778–83.

    Article  PubMed  Google Scholar 

  44. Pellicori P, Carubelli V, Zhang J, Castiello T, Sherwi N, Clark AL, et al. IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging. 2013;6:16–28.

    Article  PubMed  Google Scholar 

  45. Goei R, Ronnen HR, Kessels AH, et al. Right heart failure: diagnosis via ultrasonography of the inferior vena cava and hepatic veins. Rofo. 1997;166:36–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hollerbach S, Schultze K, Muscholl M, et al. Sonography of the inferior vena cava for the diagnosis and monitoring of treatment in patients with chronic congestive heart failure. Dtsch Med Wochenschr. 2001;126:129–33.

    Article  CAS  PubMed  Google Scholar 

  47. Goonewardena SN, Gemignani A, Ronan A, et al. Comparison of hand-carried ultrasound assessment of the inferior vena cava and N-terminal pro-brain natriuretic peptide for predicting readmission after hospitalization for acute decompensated heart failure. JACC Cardiovasc Imaging. 2008;1:595–601.

    Article  PubMed  Google Scholar 

  48. Yavaşi Ö, Ünlüer EE, Kayayurt K, et al. Monitoring the response to treatment of acute heart failure patients by ultrasonographic inferior vena cava collapsibility index. Am J Emerg Med. 2014;32(5):403–7.

    Article  PubMed  Google Scholar 

  49. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–91.

    Article  PubMed  Google Scholar 

  50. Joyner Jr CR, Herman RJ, Reid JM. Reflected ultrasound in the detection and localization of pleural effusion. JAMA. 1967;200(5):399–402.

    Article  PubMed  Google Scholar 

  51. Dénier A. Les ultrasons, leur application au diagnostic. Presse Med. 1946;22:307–8.

    Google Scholar 

  52. Liteplo AS, Marill KA, Villen T, et al. Emergency thoracic ultrasound in the differentiation of the etiology of shortness of breath (ETUDES): sonographic B-lines and N-terminal pro-brain-type natriuretic peptide in diagnosing congestive heart failure. Acad Emerg Med. 2009;16:201–10.

    Article  PubMed  Google Scholar 

  53. Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D. Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med. 2014;21:843–52.

    Article  PubMed  Google Scholar 

  54. Pivetta E, Goffi A, Lupia E, et al. Lung ultrasound implemented diagnosis of acute decompensated heart failure in the ED: a SIMEU multicenter study. Chest. 2015;148:202–10.

    Article  PubMed  Google Scholar 

  55. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93:1265–70.

    Article  PubMed  Google Scholar 

  56. Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O. The comet-tail artifact. An ultrasound sign of alveolar–interstitial syndrome. Am J Respir Crit Care Med. 1997;156:1640–6.

    Article  CAS  PubMed  Google Scholar 

  57. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, Picano E. ‘Ultrasound comet-tail images’: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;127:1690–5.

    Article  PubMed  Google Scholar 

  58. Miglioranza MH, Gargani L, Sant’Anna RT. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6:1141–51.

    Article  PubMed  Google Scholar 

  59. Gargani L, Frassi F, Soldati G, Tesorio P, Gheorghiade M, Picano E. Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart Fail. 2008;10:70–7.

    Article  CAS  PubMed  Google Scholar 

  60. Volpicelli G, Mussa A, Garofalo G, Cardinale L, Casoli G, Perotto F, Fava C, Frascisco M. Bedside lung ultrasound in the assessment of alveolar–interstitial syndrome. Am J Emerg Med. 2006;24:689–96.

    Article  PubMed  Google Scholar 

  61. Lichtenstein DA, Mezière G, Lascols N, et al. Ultrasound diagnosis of occult pneumothorax. Crit Care Med. 2005;33(6):1231–8.

    Article  PubMed  Google Scholar 

  62. Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding. Chest. 1995;108(5):1345–8.

    Article  CAS  PubMed  Google Scholar 

  63. Chiem AT, Chan CH, Ander DS, Kobylivker AN, Manson WC. Comparison of expert and novice sonographers’ performance in focused lung ultrasonography in dyspnea (FLUID) to diagnose patients with acute heart failure syndrome. Acad Emerg Med. 2015;22(5):564–73.

    Article  PubMed  Google Scholar 

  64. Wang CS, FitzGerald JM, Schulzer M, Mak E, Ayas NT. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA. 2005;294(15):1944–56.

    Article  CAS  PubMed  Google Scholar 

  65. Peacock WF, Braunwald E, Abraham W, et al. National Heart, Lung, and Blood Institute working group on emergency department management of acute heart failure: research challenges and opportunities. J Am Coll Cardiol. 2010;56(5):343–51.

    Article  PubMed  Google Scholar 

  66. Ray P, Birolleau S, Lefort Y, et al. Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care. 2006;10(3):R82.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Frassi F, Gargani L, Tesorio P, Raciti M, Mottola G, Picano E. Prognostic value of extravascular lung water assessed with ultrasound lung comets by chest sonography in patients with dyspnea and/or chest pain. J Card Fail. 2007;13:830–5.

    Article  PubMed  Google Scholar 

  68. Platz E, Lewis EF, Uno H, et al. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur Heart J. 2016;37(15):1244–51.

    Article  PubMed  Google Scholar 

  69. Trezzi M, Torzillo D, Ceriani E, Costantino G, Caruso S, Damavandi PT, et al. Lung ultrasonography for the assessment of rapid extravascular water variation: evidence from hemodialysis patients. Intern Emerg Med. 2013;8:409–15.

    Article  PubMed  Google Scholar 

  70. Facchini C, Malfatto G, Giglio A, Facchini M, Parati G, Branzi G. Lung ultrasound and transthoracic impedance for noninvasive evaluation of pulmonary congestion in heart failure. J Cardiovasc Med (Hagerstown). 2016;17:510–7.

    Article  Google Scholar 

  71. Coiro S, Rossignol P, Ambrosio G, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17(11):1172–81.

    Article  PubMed  Google Scholar 

  72. Kajimoto K, Madeen K, Nakayama T, et al. Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc Ultrasound. 2012;10(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gargani L. Lung ultrasound: a new tool for the cardiologist. Cardiovasc Ultrasound. 2011;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mantuani D, Nagdev A, Stone M. Three-view bedside ultrasound for the differentiation of acute respiratory distress syndrome from cardiogenic pulmonary edema. Am J Emerg Med. 2012;30(7):1324.e1321–4.

    Article  Google Scholar 

  75. Russell FM, Ehrman RR, Cosby K, et al. Diagnosing acute heart failure in patients with undifferentiated dyspnea: a lung and cardiac ultrasound (LuCUS) protocol. Acad Emerg Med. 2015;22(2):182–91.

    Article  PubMed  Google Scholar 

  76. Pirozzi C, Numis FG, Pagano A, et al. Immediate versus delayed integrated point-of-care-ultrasonography to manage acute dyspnea in the emergency department. Crit Ultrasound J. 2014;6(1):5.

    Google Scholar 

  77. Mantuani D, Frazee BW, Fahimi J, Nagdev A. Point-of-care multi-organ ultrasound improves diagnostic accuracy in adults presenting to the emergency department with acute dyspnea. West J Emerg Med. 2016;17(1):46–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Carnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carnell, J., Patel, R. (2017). Emergency Department Ultrasound as a Diagnostic and Therapeutic Guide. In: Peacock, W. (eds) Short Stay Management of Acute Heart Failure. Contemporary Cardiology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-44006-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44006-4_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-44005-7

  • Online ISBN: 978-3-319-44006-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics