Advertisement

NEO 2015 pp 333-355 | Cite as

EEG Signal Implementation of Movement Intention for the Teleoperation of the Mobile Differential Robot

  • Juan Villegas-CortezEmail author
  • Carlos Avilés-Cruz
  • Josué Cirilo-Cruz
  • Arturo Zuñiga-López
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 663)

Abstract

In the year 1929 a German psychiatrist, named Hans Berger, demonstrated for the first time that the electric activity of the human brain was related to the person’s mental state. He also announced the possibility of registering such type of electric activities without opening the human head, i.e. non invasive procedure , and that such electric activities could be plotted on a graph. Berger called such type of registration as electroencephalogram (EEG). EEG signals research has been growing over the years due to the their increasing use to control electronic devices in all sorts of contexts. The present work developed a prototype to control a differential robot by means of EEG signals using the detection of movement intention of the right and left hand. The study covered on one hand, the analysis and design of the teleoperation system, and on the other hand, the robot tele operational tests. It is important to point out that the robot was designed and built to meet the technical research purposes. The programming of the EEG signal processing was made using the API provided by MATLAB. In turn, the programming for controlling the mobile differential robot was made with Wiring and Python. Lastly, several tests and experiments were carried out, and they showed that the objective in view was met.

Keywords

EEG signal analysis Digital signal processing Movement intention Mobile robots 

References

  1. 1.
    Aguilar-Gallego, E.: Plataforma para la interacción con dispositivos de Electroencefalografía. Proyecto de Fin de Carrera. Departamento de Tecnologías y Sistemas de Información. Universidad de Castilla-La Mancha, Escuela Superior de Informática (2013)Google Scholar
  2. 2.
    Alarid Escudero, F., Solís-Escalante, T., Melgar, E., Valdés-Cristerna, R., Yáñez-Suárez, O.: Registro de senñales de EEG para aplicaciones de Interfaz Cerebro Computadora (ICC) basado en Potenciales Evocados Visuales de Estado Estacionario (PEVEE), pp. 87–90. Springer, Berlin (2008)Google Scholar
  3. 3.
    Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., Magruder, D.: Robonaut: a robot designed to work with humans in space 14(2–3), 179–197 (2003)Google Scholar
  4. 4.
    Cordova-Villar, S., Perez-Oviedo, W.A., Román-Gonzalez, A.: Implementation of EEG signal processing methods for communication and control application. ECIPerú, 10(1) (2013)Google Scholar
  5. 5.
    Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., Dutoit, T.: Performance of the emotiv epoc headset for p300-based applications. BioMedical Engineering OnLine. 12:56 12(1), 1–15 (2013)Google Scholar
  6. 6.
    Gentiletti, G.G., Taberning, C.B., Acevedo, R.C.: Interfaces Cerebro Computadora: Definición, tipos y Estado Actual. Laboratorio de Ingeniería en Rehabilitación e Investigaciones Neuromusculares y Sensoriales. Universidad Nacional de Entre Rios, Paraná, Argentina. Revista Springer. Carmen Mueller-Karger, Sara Wong, Alexandra La Cruz (Eds:) CLAIB 2007. IFMBE Proceedings 18, pp. 1117–1121 (2007)Google Scholar
  7. 7.
    Gutierrez-Martinez, J., Cantillo-Negrete. J., Cariño-Escobar, R.I., Viñas, D.E.: Los sistemas de interfaz cerebro-computadora: una herramienta para apoyar la rehabilitación de pacientes con discapacidad motora. Investigación en Discapacidad. Vol. Num. 2 Mayo-Agosto 2013, pp. 62–69. MéxicoGoogle Scholar
  8. 8.
    Gutiérrez-Flores, L., Avilés-Cruz, C., Villegas-Cortez, J., Ferreyra-Ramírez, A.: EEG PATTERN RECOGNITION: application to a real time control system for android-based mobile devices. Lecture Notes in Computer Science, vol. 7914, pp. 232–241. Springer, Berlin (2013)Google Scholar
  9. 9.
    Kan, D.P.X., Lim, V.W.W., Lee, P.F.: Signal Conversion from Attention Signals to Light Emitting Diodes as an Attention Level Indicator. IFMBE Proceedings, pp. 251–255. Springer International Publishing, Cham (2015)Google Scholar
  10. 10.
    Marques de Sá, J.P.: Pattern Recognition.: Concepts, Methods and Applications. Springer, Berlin (2001)Google Scholar
  11. 11.
    Minguez, J.: Tecnología e Interfaz Cerebro-Computador. Grupo de Robótica, Percepción y Tiempo Real. Departamento de Informática e Ingeniería de Sistemas. Universidad de Zaragoza, EspañaGoogle Scholar
  12. 12.
    Miranda, E.R., Castet, J., Legrand, P., Vézard, L., Chavent, M., Faïta-Aïnseba, F., Trujillo, L.: Feature Extraction and Classification of EEG Signals. The Use of a Genetic Algorithm for an Application on Alertness Prediction, pp. 191–220. Springer, London (2014)Google Scholar
  13. 13.
    Plata-Torres, F.A., Serrano-Rojas, R.F., Chio-Cho, N.: Diseño y Construcción de un Prototipo de Robot Móvil Tele operado para inspección Visual. Epsilon. Vol. 8, pp. 101–109. Enero-Junio (2007)Google Scholar
  14. 14.
    Ponticelli-Lima, R.C.: Sistema de exploración de terrenos con robots móviles: aplicación en tareas de detección y localización de minas antipersonas. Memoria para optar por el grado de Doctor en Control Automático y Sistemas. Madrid, España Universidad Complutense de Madrid (2011)Google Scholar
  15. 15.
    Rodriguez-Bermudez, G., García-Laencina, P.J., Brizion, D., Roca-Dorda, J.: Adquisición, procesamiento y clasificación de señales EEG para el diseño de sistemas BCI basados en imaginación de movimiento. Investigación CUD. Centro Universitario de la defensa (CUD) de San Javier, Santiago de la Ribera-Murcia, EspañaGoogle Scholar
  16. 16.
    Ureña, J., Mazzo, M., García, J.J., Revenga, P.A., Lazaro, J.L., García, J.C., Rodríguez, F.J., Santiso, E.: Diseño y Utilización de un Sistema Sensorial para aplicaciones de Robots Móviles. Interface, pp. 8–13 (1995)Google Scholar
  17. 17.
    Villanueva-Escudero, C., Villegas-Cortez, J., Zuniga-López, A., Avilés-Cruz, C.: Monocular Visual Odometry Based Navigation for a Differential Mobile Robot with Android OS. Human-Inspired Computing and Its Applications - Lecture Notes in Computer Science, vol. 8856, pp. 281–292. Springer International Publishing, Berlin (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Juan Villegas-Cortez
    • 1
    Email author
  • Carlos Avilés-Cruz
    • 1
  • Josué Cirilo-Cruz
    • 1
  • Arturo Zuñiga-López
    • 1
  1. 1.Departamento de ElectrónicaUniversidad Autónoma Metropolitana, Unidad AzcapotzalcoCiudad de MéxicoMexico

Personalised recommendations