Skip to main content

Selecting Keypoint Detector and Descriptor Combination for Augmented Reality Application

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9811)

Abstract

In this paper, we compare the performance of image keypoints detectors and descriptors on well known Oxford dataset. We use evaluation criteria which were presented by Mikolajczyk et al. [12, 13]. We created most of the possible combinations of keypoint detector and descriptor, but in this paper, we present only selected pairs. The best performing detector and descriptor pair are selected for future research, mainly with the focus on augmented reality.

Keywords

  • Keypoint detector
  • Keypoint descriptor
  • Feature extraction
  • Augmented reality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43958-7_73
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43958-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    The dataset is available at http://www.robots.ox.ac.uk/~vgg/research/affine.

  2. 2.

    OpenCV is available at http://opencv.org/.

References

  1. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  2. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)

    Google Scholar 

  3. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

  4. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  5. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    CrossRef  Google Scholar 

  6. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  7. Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 759–773. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Leutenegger, S., Chli, M., Siegwart, R.: Brisk: binary robust invariant scalable keypoints. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 2548–2555. IEEE Computer Society, Barcelona (2011)

    Google Scholar 

  9. Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes (2015). CoRR abs/1501.03719

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  11. Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 183–196. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  12. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1–2), 43–72 (2005)

    CrossRef  Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    CrossRef  Google Scholar 

  14. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    CrossRef  Google Scholar 

  16. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  17. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    CrossRef  Google Scholar 

  18. Ziegler, A., Christiansen, E., Kriegman, D., Belongie, S.J.: Locally uniform comparison image descriptor. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1–9. Curran Associates, Inc/, Red Hook (2012)

    Google Scholar 

  19. Zitnick, C.L., Ramnath, K.: Edge foci interest points. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 359–366. IEEE Computer Society (2011)

    Google Scholar 

Download references

Acknowledgment

This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports and by grant of the University of West Bohemia, project No. SGS-2016-039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Bureš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bureš, L., Müller, L. (2016). Selecting Keypoint Detector and Descriptor Combination for Augmented Reality Application. In: Ronzhin, A., Potapova, R., Németh, G. (eds) Speech and Computer. SPECOM 2016. Lecture Notes in Computer Science(), vol 9811. Springer, Cham. https://doi.org/10.1007/978-3-319-43958-7_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43958-7_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43957-0

  • Online ISBN: 978-3-319-43958-7

  • eBook Packages: Computer ScienceComputer Science (R0)