Skip to main content

Language Identification Using Time Delay Neural Network D-Vector on Short Utterances

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9811)

Abstract

This paper describes d-vector language identification (LID) system on short utterances using time delay neural network (TDNN) acoustic model for the speech recognition task. The acoustic TDNN model is chosen for ASR system of ICQ messenger and it’s applied for the LID task. We compared LID TDNN d-vector results to i-vector baseline. It was found that the TDNN system performance is close at any durations while i-vector shows good results only at long time. Open-set test is conducted. Relative improvement of 5.5 % over the i-vector system is shown.

Keywords

  • Language identification
  • I-vector
  • D-vector
  • Speech recognition acoustic model
  • Neural networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43958-7_53
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43958-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19, 788–798 (2011). IEEE Press

    CrossRef  Google Scholar 

  2. Martinez, D., Plchot, O., Burget, L., Glembek, O., Matejka, P.: Language recognition in ivectors space. In: 12th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 861–864. ISCA, Florence (2011)

    Google Scholar 

  3. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645-6649. IEEE Press, Vancouver (2013)

    Google Scholar 

  4. Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., Moreno, P.: Automatic language identification using long short-term memory recurrent neural networks. In: 16th Annual Conference of the International Speech Communication Association (INTERSPEECH). ISCA, Dresden (2015)

    Google Scholar 

  5. Zazo, R., Lozano-Diez, A., Gonzalez-Dominguez, J., Toledano, D., Gonzalez-Rodriguez, J.: Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks. PLoS ONE 11(1), e0146917 (2016)

    CrossRef  Google Scholar 

  6. Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture for efficient modeling of long temporal contexts. In: 16th Annual Conference of the International Speech Communication Association (INTERSPEECH). ISCA, Dresden (2015)

    Google Scholar 

  7. Variani, E., Lei, X., McDermott, E., Moreno, I.L., Gonzalez-Dominguez, J.: Deep neural networks for small footprint text-dependent speaker verification. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE Press, Singapore (2014)

    Google Scholar 

  8. Kenny, P., Oullet, P., Dehak, N., Gupta, V., Dumouchel, P.: A study of interspeaker variability in speaker verification. IEEE Trans. Audio Speech Lang. Process. 16, 980–988 (2008). IEEE Press

    CrossRef  Google Scholar 

  9. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, Hawaii (2011)

    Google Scholar 

  10. Testarium. Research tool and experiment repository. http://testarium.makseq.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Tkachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tkachenko, M., Yamshinin, A., Lyubimov, N., Kotov, M., Nastasenko, M. (2016). Language Identification Using Time Delay Neural Network D-Vector on Short Utterances. In: Ronzhin, A., Potapova, R., Németh, G. (eds) Speech and Computer. SPECOM 2016. Lecture Notes in Computer Science(), vol 9811. Springer, Cham. https://doi.org/10.1007/978-3-319-43958-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43958-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43957-0

  • Online ISBN: 978-3-319-43958-7

  • eBook Packages: Computer ScienceComputer Science (R0)