Enhancing EHR Systems Interoperability by Big Data Techniques

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9832)


Information management in healthcare is nowadays experiencing a great revolution. After the impressive progress in digitizing medical data by private organizations, also the federal government and other public stakeholders have also started to make use of healthcare data for data analysis purposes in order to extract actionable knowledge. In this paper, we propose an architecture for supporting interoperability in healthcare systems by exploiting Big Data techniques. In particular, we describe a proposal based on big data techniques to implement a nationwide system able to improve EHR data access efficiency and reduce costs.


Big data Healthcare Interoperability 


  1. 1.
    Synapses/SynEx goes XML. Studies in Health Technology and Informatics, IOS press (1999)Google Scholar
  2. 2.
  3. 3.
    Big data. Nature., September 2008Google Scholar
  4. 4.
    Data, data everywhere. The Economist., February 2010Google Scholar
  5. 5.
    Drowning in numbers - digital data will flood the planet - and help us understand it better. The Economist., November 2011Google Scholar
  6. 6.
    Agrawal et al., D.: Challenges and opportunities with big data. A community white paper developed by leading researchers across the United States., March 2012Google Scholar
  7. 7.
    Appari, A., Johnson, M.E.: Information security and privacy in healthcare: current state of research. Int. J. Internet Enterp. Manage. 6(4), 279 (2010)CrossRefGoogle Scholar
  8. 8.
    Bittner, T., Donnelly, M., Winter, S.: Ontology and semantic interoperability. Large-Scale 3D Data Integration. CRC Press, London (2005)CrossRefGoogle Scholar
  9. 9.
    Blobel, B., Oemig, F.: What is needed to finally achieve semantic interoperability? IFMBE Proc. 25(12), 411–414 (2009)CrossRefGoogle Scholar
  10. 10.
    Blobel, B., Kalra, D., Koehn, M., Lunn, K., Pharow, P., Ruotsalainen, P., Schulz, S., Smith, B.: The role of ontologies for sustainable, semantically interoperable and trustworthy ehr solutions. In: Medical Informatics in a United and Healthy Europe - Proceedings of MIE 2009, The XXIInd International Congress of the European Federation for Medical Informatics, Sarajevo, Bosnia and Herzegovina, Agust 30 - September 2, 2009, pp. 953–957 (2009).
  11. 11.
    Borst, F., Appel, R., Baud, R., Ligier, Y., Scherrer, J.: Happy birthday diogene: a hospital information system born 20 years ago. Int. J. Med. Inf. 54(3), 157–167 (1999)CrossRefGoogle Scholar
  12. 12.
    Bouhaddou, O., Warnekar, P., Parrish, F., Do, N., Mandel, J., Kilbourne, J., Lincoln, M.J.: Exchange of computable patient data between the department of veterans affairs (va) and the department of defense (dod): terminology mediation strategy. J. Am. Med. Inf. Assoc. 15(2), 174–183 (2008)CrossRefGoogle Scholar
  13. 13.
    Dogac, A., Laleci, G.B., Aden, T., Eichelberg, M.: Enhancing ihe xds for federated clinical affinity domain support. IEEE Trans. Inf. Technol. Biomed. 11(2), 213–221 (2007). CrossRefGoogle Scholar
  14. 14.
    Dogac, A., Laleci, G.B., Kabak, Y., Unal, S., Heard, S., Beale, T., Elkin, P.L., Najmi, F., Mattocks, C., Webber, D., Kernberg, M.: Exploiting ebxml registry semantic constructs for handling archetype metadata in healthcare informatics. Int. J. Metadata Seman. Ontol. 1(1), 21–36 (2006). CrossRefGoogle Scholar
  15. 15.
    Esposito, C., Ciampi, M., De Pietro, G., Donzelli, P.: Notifying medical data in health information systems. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems. pp. 373–374. DEBS 2012, NY, USA. ACM, New York (2012).
  16. 16.
    Haux, R.: Health information systems past, present, future. Int. J. Med. Inf. 75(3–4), 268–281 (2006)CrossRefGoogle Scholar
  17. 17.
    Huang, H.K.: PACS and imaging informatics. Wiley-Liss, Hoboken (2004)CrossRefGoogle Scholar
  18. 18.
    Masciari, E., Mazzeo, G.M., Zaniolo, C.: Analysing microarray expression data through effective clustering. Inf. Sci. 262, 32–45 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nixon, L.J.B., Cerizza, D., Valle, E.D., Simperl, E., Krummenacher, R.: Enabling collaborative ehealth through triplespace computing. In: Proceedings of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 80–85. WETICE 2007, IEEE Computer Society, Washington, DC (2007).
  20. 20.
    Nordbotten, N.A.: Xml and web services security standards. IEEE Commun. Surv. Tutorials 11(3), 4–21 (2009). MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schloeffel, P., Beale, T., Hayworth, G., Heard, S., Leslie, H.: The relationship between cen 13606, hl7, and openehr (2006)Google Scholar
  22. 22.
    Sittig, D., Kuperman, G., Teich, J.: Www-based interfaces to clinical information systems: the state of the art. In: Proceedings of the AMIA Annual Fall Symposium, pp. 694–698. CRC Press, London (1996)Google Scholar
  23. 23.
    White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media Inc, Sebastopol (2009)Google Scholar
  24. 24.
    Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, pp. 2–2. USENIX Association (2012)Google Scholar
  25. 25.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, pp. 10–10. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ICAR-CNRRendeItaly

Personalised recommendations