Regional Innovation Systems: An Agent-Based Laboratory for Policy Advice

  • Cristina PonsiglioneEmail author
  • Ivana Quinto
  • Giuseppe Zollo
Part of the Economic Complexity and Evolution book series (ECAE)


The chapter presents a computational model for the development of a self-sustaining Regional Innovation System (RIS). The computational agent-based model is the core of a virtual laboratory, called CARIS (Complex Adaptive Regional Innovation System) aiming at (1) introducing the CAS (Complex Adaptive System) approach in the analysis of RISs; (2) enabling the development of effective innovation policies able to foster the growth and innovativeness of regions. This topic is particularly relevant for the so-called lagging regions, which, despite conspicuous policy interventions, have been unable to develop a significant capability to innovate. According to the European Union, lagging regions are those regions which show a GDP per capita less than 75 % of the European average. In this chapter, the methodological approach to verify the internal coherence of the model, as well as the simulation outputs are thoroughly discussed. Results show that the code is free of evident bugs, that it works coherently with the meta-model and that the agent-based computational model is able to reproduce some stylized representations characterizing the system under investigation. Finally, the first steps of the calibration activities and some preliminary results are described. Once fully validated, the CARIS laboratory should help researchers and practitioners to better investigate what critical mass of local resources and competencies are necessary to sustain the growth of RISs and, how effective current innovation policies are and what are the most effective measures to improve the current pattern.


Innovation System Competitive Environment Innovation Policy Aerospace Industry Complex Adaptive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahuja G (2000) Collaboration networks, structural holes, and innovation: a longitudinal study. Admin Sci Q 45(3):425–455. doi: 10.2307/2667105 CrossRefGoogle Scholar
  2. Ahuja G, Lampert MC (2001) Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions. Strat Manag J 22(6–7):521–543. doi: 10.1002/smj.176 CrossRefGoogle Scholar
  3. Albino V, Carbonara N, Giannoccaro I (2006) Innovation in industrial districts: an agent-based simulation model. Int J Prod Econ 104(1):30–45. doi: 10.1016/j.ijpe.2004.12.023 CrossRefGoogle Scholar
  4. Alvarez SA, Barney JB (2001) How entrepreneurial firms can benefit from alliances with large partners. Acad Manag Exec 15(1):139–148CrossRefGoogle Scholar
  5. Asheim BT (1996) Industrial districts as ‘learning regions’: a condition for prosperity. Eur Plann Stud 4(4):379–400. doi: 10.1080/09654319608720354 CrossRefGoogle Scholar
  6. Asheim BT, Coenen L (2005) Knowledge bases and regional innovation systems: comparing Nordic clusters. Res Pol 34(8):1173–1190. doi: 10.1016/j.respol.2005.03.013 CrossRefGoogle Scholar
  7. Asheim BT, Gertler M (2005) The geography of innovation: regional innovation systems. In: Fagerberg J, Mowery D, Nelson R (eds) The Oxford handbook of innovation. Oxford University Press, Oxford, pp 291–317Google Scholar
  8. Asheim BT, Isaksen A (2002) Regional innovation systems: the integration of local ‘sticky’ and global ‘ubiquitous’ knowledge. J Technol Tran 27(1):77–86. doi: 10.1023/A:1013100704794 CrossRefGoogle Scholar
  9. Asheim BT, Isaksen A, Nauwelaers C, Todtling F (2003) Regional innovation policy for small–medium enterprises. Edward Elgar, CheltenhamCrossRefGoogle Scholar
  10. Asheim BT, Boschma R, Cooke P (2011) Constructing regional advantage: platform policies based on related variety and differentiated knowledge bases. Reg Stud 45(7):893–904. doi: 10.1080/00343404.2010.543126 CrossRefGoogle Scholar
  11. Benner MJ, Tushman M (2002) Process management and technological innovation: a longitudinal study of the photography and paint industries. Admin Sci Q 47:676–706. doi: 10.2307/3094913 CrossRefGoogle Scholar
  12. Bottazzi G, Secchi A, Tamagni F (2008) Productivity, profitability and financial performance. Ind Corp Change 17(4):711–751. doi: 10.1093/icc/dtn027 CrossRefGoogle Scholar
  13. Brenner T (2001) Simulating the evolution of localised industrial clusters-an identification of the basic mechanisms. J Artif Soc Soc Simulat 4(3):4Google Scholar
  14. Brenner T, Werker C (2009) Policy advice derived from simulation models. J Artif Soc Soc Simulat 12(4):2Google Scholar
  15. Burton RM (2003) Computational laboratories for organization science: questions, validity and docking. Comput Math Organ Theor 9(2):91–108. doi: 10.1023/B:CMOT.0000022750.46976.3c CrossRefGoogle Scholar
  16. Camagni R (1991) Local milieu, uncertainty and innovation networks: towards a new dynamic theory of economic space. In: Camagni R (ed) Innovation networks: spatial perspectives. Belhaven, LondonGoogle Scholar
  17. Carley KM (1996) Validating computational models. Paper available at Accessed 20 May 2015
  18. Clark N (1987) Similarities and differences between scientific and technological paradigms. Futures 19:26–42CrossRefGoogle Scholar
  19. Cohen WM, Levinthal DA (1989) Innovation and learning: the two faces of R&D. Econ J 99(397):569–596CrossRefGoogle Scholar
  20. Cohen WM, Levinthal DA (1990) Absorptive capacity: a new perspective on learning and innovation. Admin Sci Q 35:128–152. doi: 10.2307/2393553 CrossRefGoogle Scholar
  21. Cooke P (1996) The new wave of regional innovation networks: analysis, characteristics and strategy. Small Bus Econ 8(2):159–171. doi: 10.1007/BF00394424 CrossRefGoogle Scholar
  22. Cooke P (2001) From technopoles to regional innovation systems: the evolution of localised technology development policy. Can J Reg Sci XXIV(1):21–40Google Scholar
  23. Cooke P, Morgan K (1998) The associational economy. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Cooke P, Schienstock G (2000) Structural competitiveness and learning regions. Enterprise Innovat Manag Stud 1(3):265–280. doi: 10.1080/14632440010023217 CrossRefGoogle Scholar
  25. Cooke P, Uranga MG, Etxebarria G (1998) Regional systems of innovation: an evolutionary perspective. Environ Plann A 30:1563–1584. doi: 10.1068/a301563 CrossRefGoogle Scholar
  26. Cowan R, Jonard N (2004) Network structure and the diffusion of knowledge. J Econ Dynam Contr 28(8):1557–1575CrossRefGoogle Scholar
  27. Cowan R, Jonard N (2009) Knowledge portfolios and the organization of innovation networks. Acad Manag Rev 34(2):320–342. doi: 10.5465/amr.2008.0052 Google Scholar
  28. Crossan MM, Lane HW, White RE (1999) An organizational learning framework: from intuition to institution. Acad Manag Rev 24(3):522–537Google Scholar
  29. Doloreux D (2002) What we should know about regional systems of innovation. Technol Soc 24(3):243–263. doi: 10.1016/S0160-791X(02)00007-6 CrossRefGoogle Scholar
  30. Doloreux D, Parto S (2004) Regional innovation system: a critical synthesis. UNU-INTECH Discussion Paper Series 2004-17, United Nation University, Maastricht, The NetherlandsGoogle Scholar
  31. Doloreux D, Parto S (2005) Regional innovation systems: current discourse and unresolved issues. Technol Soc 27(2):133–153. doi: 10.1016/j.techsoc.2005.01.002 CrossRefGoogle Scholar
  32. Dosi G (1988) Sources, procedures, and microeconomic effects of innovation. J Econ Lit 26:1120–1171Google Scholar
  33. Edquist C (2004) Reflections on the systems of innovation approach. Sci Publ Pol 31(6):485–489. doi: 10.3152/147154304781779741 CrossRefGoogle Scholar
  34. Enright MJ (2000) The globalization of competition and the localization of competitive advantage: policies towards regional clustering. In: Hood N, Young S (eds) The globalization of multinational enterprise activity and economic development. Palgrave Macmillan, London, pp 303–331CrossRefGoogle Scholar
  35. Fischer MM (2001) Innovation, knowledge creation and systems of innovation. Ann Reg Sci 35(2):199–216. doi: 10.1007/s001680000034 CrossRefGoogle Scholar
  36. Fondazione Mezzogiorno Tirrenico (2011)
  37. Foray D (2009) The new economics of technology policy. Edward Elgar, CheltenhamCrossRefGoogle Scholar
  38. Fritsch M, Stephan A (2005) Regionalization of innovation policy—introduction to the special issue. Res Pol 34(8):1123–1127CrossRefGoogle Scholar
  39. Garnsey E (1998) The genesis of the high technology milieu: a study in complexity. Int J Urban Reg Res 22(3):361–377. doi: 10.1111/1468-2427.00146 CrossRefGoogle Scholar
  40. Gertler MS (2003) Tacit knowledge and the economic geography of context, or the undefinable tacitness of being (there). J Econ Geogr 3(1):75–99. doi: 10.1093/jeg/3.1.75 CrossRefGoogle Scholar
  41. Gilbert M (2008) Agent-based models, Quantitative applications in the social sciences. SAGE, Los Angeles, CACrossRefGoogle Scholar
  42. Grant RM (1991) The resource-based theory of competitive advantage: implications for strategy formulation. In: Zack M (ed) Knowledge and strategy. Butterworth Heinemann, Boston, MA, pp 3–23Google Scholar
  43. Gupta AK, Smith KG, Shalley CE (2006) The interplay between exploration and exploitation. Acad Manag J 49(2006):693–706CrossRefGoogle Scholar
  44. Hagedoorn J, Schakenraad J (1994) The effect of strategic technology alliances on company performance. Strat Manag J 15(4):291–309. doi: 10.1002/smj.4250150404 CrossRefGoogle Scholar
  45. Hall A, Clark N (2010) What do complex adaptive systems look like and what are the implications for innovation policy? J Int Dev 22(3):308–324. doi: 10.1002/jid.1690 CrossRefGoogle Scholar
  46. Holland JH (1995) Hidden order: how adaptation builds complexity. Helix Books, Addison Wesley, Reading, MAGoogle Scholar
  47. Holland JH (2002) Complex adaptive systems and spontaneous emergence. In: Quadrio Curzio A, Fortis M (eds) Complexity and industrial clusters. Springer, Berlin, pp 25–34CrossRefGoogle Scholar
  48. Hollanders H, Tarantola S, Loschky A (2009) Regional innovation scoreboard (RIS) 2009. PRO INNO EURO, INNO METRICSGoogle Scholar
  49. Hollanders H, Rivera Leon L, Roman L (2012) Regional innovation scoreboard (RIS) 2012. PRO INNO EURO, INNO METRICSGoogle Scholar
  50. Hollanders H, Es-Sadki N, Buligescu B, Rivera Leon L, Griniece E, Roman L (2014) Regional innovation scoreboard (RIS) 2014. PRO INNO EURO, INNO METRICSGoogle Scholar
  51. Kim CS, Inkpen AC (2005) Cross-border R&D alliances, absorptive capacity and technology learning. J Int Manag 11(3):313–329. doi: 10.1016/j.intman.2005.06.002 CrossRefGoogle Scholar
  52. Lombardi M (2003) The evolution of local production systems: the emergence of the “invisible mind” and the evolutionary pressures towards more visible “minds”. Res Pol 32:1443–1462. doi: 10.1016/S0048-7333(02)00157-9 CrossRefGoogle Scholar
  53. Longhi C (2002) From exogenous to endogenous local development: the cases of the Toulouse and Sophia Antipolis technopoles. In: Quadrio Curzio A, Fortis M (eds) Complexity and industrial clusters. Springer, Berlin, pp 213–237CrossRefGoogle Scholar
  54. Lorenzen M (1998) Specialization and localized learning. Copenhagen Business School Press, CopenhagenGoogle Scholar
  55. Louie MA, Carley KM (2008) Balancing the criticisms: validating multi-agent models of social systems. Simulat Model Pract Theor 16(2):242–256. doi: 10.1016/j.simpat.2007.11.011 CrossRefGoogle Scholar
  56. Lucas RE Jr (1993) Making a miracle. Econometrica 61:251–272. doi: 10.2307/2951551 CrossRefGoogle Scholar
  57. Maillat D (1998) Innovative milieux and new generations of regional policies. Entrepren Reg Dev 10(1):1–16. doi: 10.1080/08985629800000001 CrossRefGoogle Scholar
  58. March JG (1991) Exploration and exploitation in organizational learning. Organ Sci 2(1):71–87. doi: 10.1287/orsc.2.1.71 CrossRefGoogle Scholar
  59. Maskell P, Malmberg A (1999) Localised learning and industrial competitiveness. Camb J Econ 23(2):167–185. doi: 10.1093/cje/23.2.167 CrossRefGoogle Scholar
  60. Moss S (2008) Alternative approaches to the empirical validation of agent-based models. J Artif Soc Soc Simulat 11(1):5Google Scholar
  61. Moulaert F, Sekia F (2003) Territorial innovation models: a critical survey. Reg Stud 37(3):289–302. doi: 10.1080/0034340032000065442 CrossRefGoogle Scholar
  62. Mundial B (2009) World development report 2009: reshaping economic geography. World BankGoogle Scholar
  63. Nonaka I, Takeuchi H (1995) The knowledge creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, New YorkGoogle Scholar
  64. OECD (2009) Applications of complexity science for public policy: new tools for finding unanticipated consequences and unrealized opportunities. OECD Global Science Forum, ParisGoogle Scholar
  65. OECD (2011) Regions and innovation policy, OECD reviews of regional innovation. OECD, ParisCrossRefGoogle Scholar
  66. Parsons T (1970) The social system. Routledge & Kegan Paul, LondonGoogle Scholar
  67. Pavitt K (1993) What do firms learn from basic research. In: Foray D, Freeman C (eds) Technology and the wealth of nations. Pinter, London, pp 29–40Google Scholar
  68. Penrose ET (1959) The theory of growth of the firm. Oxford University Press, OxfordGoogle Scholar
  69. Richiardi M, Leombruni R, Saam N, Sonnessa M (2006) A common protocol for agent-based social simulation. J Artif Soc Soc Simulat 9(1):15Google Scholar
  70. Robinson DT, Stuart TE (2007) Financial contracting in biotech strategic alliances. J Law Econ 50(3):559–596. doi: 10.1086/519811 CrossRefGoogle Scholar
  71. Rothaermel FT, Deeds DL (2006) Alliance type, alliance experience and alliance management capability in high-technology ventures. J Bus Venturing 21(4):429–460. doi: 10.1016/j.jbusvent.2005.02.006 CrossRefGoogle Scholar
  72. Sargent RG (2004) Validation and verification of simulation models. In: Proceedings of the 2004 Winter simulation conference 2004, vol 1. IEEE.Google Scholar
  73. Schwandt DR, Marquardt MJ (2000) Organizational learning. From world-class theories to global best practices. St. Lucie, Boca Raton, FLGoogle Scholar
  74. Squazzoni F, Boero R (2002) Economic performance, inter-firm relations and local institutional engineering in a computational prototype of industrial districts. J Artif Soc Soc Simulat 5(1)Google Scholar
  75. Tesfatsion L (2002) Economic agents and markets as emergent phenomena. Proc Natl Acad Sci USA 99(suppl 3):7191–7192CrossRefGoogle Scholar
  76. Valdani E (1995) Marketing strategico: un’impresa proattiva per sviluppare capacità, market, driving e valore. ETAS Libri, MilanoGoogle Scholar
  77. Valvano S, Vannoni D (2003) Diversification strategies and corporate coherence evidence from Italian leading firms. Rev Ind Organ 23(1):25–41. doi: 10.1023/B:REIO.0000005560.15486.9d CrossRefGoogle Scholar
  78. Walsh JP, Ungson GR (1991) Organizational memory. Acad Manag Rev 16(1):57–91CrossRefGoogle Scholar
  79. Werker C (2006) An assessment of the regional innovation policy by the European Union based on bibliometrical analysis (no. 0611). Papers on economics and evolutionGoogle Scholar
  80. Zahra SA, Ireland RD, Hitt MA (2000) International expansion by new venture firms: international diversity, mode of market entry, technological learning, and performance. Acad Manag J 43(5):925–950. doi: 10.2307/1556420 CrossRefGoogle Scholar
  81. Zollo M, Winter SG (2002) Deliberate learning and the evolution of dynamic capabilities. Organ Sci 13(3):339–351CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Cristina Ponsiglione
    • 1
    Email author
  • Ivana Quinto
    • 1
    • 2
  • Giuseppe Zollo
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Online Pegaso UniversityNaplesItaly

Personalised recommendations