Skip to main content

Sojourn Time Analysis for Processor Sharing Loss System with Unreliable Server

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 9845)

Abstract

Processor sharing (PS) queuing systems and particularly their well-known class of egalitarian processor (EPS) sharing are widely investigated by research community and applied for the analysis of wire and wireless communication systems and networks. The same can be said for queuing systems in random environment, with unreliable servers, interruptions, pre-emption mechanisms. Nevertheless, only few works focus on queues with both PS discipline and unreliable servers. In the paper, compared with the previous results we analyse a finite capacity PS queuing system with unreliable server and an upper limit of the number of customers it serves simultaneously. For calculating the mean sojourn time, unlike a popular but computational complex technique of inverse Laplace transform we use an effective method based on embedded Markov chains. The paper also includes a practical numerical example of web browsing in a wireless network when the corresponding low priority traffic can be interrupted by more priority applications.

Keywords

  • Queuing system
  • Processor sharing
  • Egalitarian processor sharing
  • Unreliable server
  • Interruption
  • Probability distribution
  • Recursive algorithm
  • Mean sojourn time
  • Embedded Markov chain
  • Web browsing

The reported study was funded by RFBR according to the research projects No. 16-07-00766 16-37-60103 and 16-37-00421 and by Ministry of Education and Science of the Russian Federation (No. 2987.2016.5).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ben Fredj, S., Bonald, T., Proutiere, A., Regnie, G., Roberts, J.W.: Statistical bandwidth sharing: a study of congestion at flow level. In: ACM SIGCOMM 2001, pp. 111–122 (2001)

    Google Scholar 

  2. Al-Begain, K., Awan, I., Kouvatsos, D.D.: Analysis of GSM/GPRS cell with multiple data service classes. Wireless Pers. Commun. 25, 41–57 (2003)

    CrossRef  MATH  Google Scholar 

  3. Kleinrock, L.: Analysis of a time-shared processor. Nav. Res. Logistics Q. 11, 59–73 (1964)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Kleinrock, L.: Time-shared systems: a theoretical treatment. J. ACM 14(2), 242–261 (1967)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Yashkov, S.F.: Processor-sharing queues: some progress in analysis. Queuing Syst. 2(1), 1–17 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical theory. Autom. Remote Control 68(9), 1662–1731 (2007)

    CrossRef  MATH  Google Scholar 

  7. Morrison, J.A.: Response-time distribution for a processor-sharing system. SIAM J. Appl. Math. 45(1), 152–167 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Knessl, C.: On finite capacity processor-shared queues. SIAM J. Appl. Math. 50(1), 264–287 (1990)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Zhen, Q., Knessl, C.: On sojourn times in the finite capacity M/M/1 queue with processor sharing. Oper. Res. Lett. 37(6), 447–450 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Rege, K., Sengupta, B.: Sojourn time distribution in a multiprogrammed computer system. AT&T Tech. J. 64(5), 1077–1090 (1985)

    CrossRef  MathSciNet  Google Scholar 

  11. Nunez-Queija, R.: Sojourn times in a processor sharing queue with service interruptions. Queueing Syst. 34(1), 351–386 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Nunez-Queija, R.: Sojourn times in non-homogeneous QBD processes with processor-sharing. Stoch. Models 17(1), 61–92 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Zhen, Q., Knessl, C.: Asymptotic analysis of spectral properties of finite capacity processor shared queues. Stud. Appl. Math. 131(2), 179–210 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Samouylov, K., Gudkova, I.: Recursive computation for a multi-rate model with elastic traffic and minimum rate guarantees. In: 2nd International Congress on Ultra Modern Telecommunications and Control Systems ICUMT, pp. 1065–1072 (2010)

    Google Scholar 

  15. Fiems, D., Bruneel, H.: Discrete-time queueing systems with Markovian preemptive vacations. Math. Comput. Model. 57(3–4), 782–792 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    MATH  Google Scholar 

  17. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Gudkova, I., Samouylov, K., Ostrikova D., Mokrov, E., Ponomarenko-Timofeev, A., Andreev, S., Koucheryavy, Y.: Service failure and interruption probability analysis for licensed shared access regulatory framework. In: 7th International Congress on Ultra Modern Telecommunications and Control Systems ICUMT, pp. 123–131 (2015)

    Google Scholar 

  19. ITU-T G.1030 Estimating end-to-end performance in IP networks for data applications (2014)

    Google Scholar 

  20. Hosek, J., Ries, M., Vajsar, P., Nagy, L., Sulc, Z., Hais, P., Penizek, R.: Mobile web QoE study for smartphones. IEEE GLOBECOM 2013, 1157–1161 (2013)

    Google Scholar 

  21. ITU-T G.1031 QoE factors in web-browsing (2014)

    Google Scholar 

  22. ITU-T M.2370 IMT traffic estimates for the years 2020 to 2030 (2015)

    Google Scholar 

  23. ITU-T G.1010 End-user multimedia QoS categories (2001)

    Google Scholar 

  24. How long do Users Stay on Web Pages? Nielsen Norman Group (2011). https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages

  25. Realistic LTE Performance – From Peak Rate to Subscriber Experience. White paper, Motorola (2009). http://www.apwpt.org/downloads/realistic_lte_experience_wp_motorola_aug2009.pdf

  26. Interesting Stats. HTTP Archive (2016). http://httparchive.org/interesting.php?a=All&l=Apr%2015%202016

Download references

Acknowledgment

The authors wish to thank the referees for their useful comments. We are grateful to the research group coordinator of the Wireless System Laboratory at the Brno University of Technology (Czech Republic) Dr. Jiri Hosek for the advice on the numerical case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Gudkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Samouylov, K., Naumov, V., Sopin, E., Gudkova, I., Shorgin, S. (2016). Sojourn Time Analysis for Processor Sharing Loss System with Unreliable Server. In: Wittevrongel, S., Phung-Duc, T. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2016. Lecture Notes in Computer Science(), vol 9845. Springer, Cham. https://doi.org/10.1007/978-3-319-43904-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43904-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43903-7

  • Online ISBN: 978-3-319-43904-4

  • eBook Packages: Computer ScienceComputer Science (R0)