Evaluation of Uryupina’s Coreference Resolution Features for Polish

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9561)


Coreference is usually defined as phenomenon consisting in different expressions relating to the same referent. Therefore automatic coreference resolution is an extremely difficult and complex task. It can be approached in two different ways: using rule-based tools or machine learning. This article is dedicated to the second approach and describes an evaluation of a set of surface, syntactic, discourse, salience and anaphoric features proposed by Uryupina and their usefulness for coreference resolution in Polish texts.


Uryupina Machine learning Coreference resolution Polish language Surface features Syntactic features Salience Discourse Anaphoricity and antecedenthood BART 


  1. 1.
    Uryupina, O.: Knowledge acquisition for coreference resolution. Ph.D. thesis, Saarland University (2007).
  2. 2.
    Przepiórkowski, A., Bańko, M., Górski, R.L., Lewandowska-Tomaszczyk, B. (eds.): Narodowy Korpus Jȩzyka Polskiego [Eng.: National Corpus of Polish]. Wydawnictwo Naukowe PWN, Warsaw (2012)Google Scholar
  3. 3.
    Wagner, R.A., Fisher, J.M.: The string-to-string correction problem. J. Assoc. Comput. Mach. 21(1), 168–173 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti, A.: BART: a modular toolkit for coreference resolution. In: Association for Computational Linguistics (ACL) Demo Session (2008)Google Scholar
  5. 5.
    Karttunen, L.: Discourse referents. In: McCawley, J.D. (ed.) Syntax and Semantics 7: Notes from the Linguistic Underground, pp. 363–386. Academic Press, New York (1976)Google Scholar
  6. 6.
    Pradhan, S., Ramshaw, L., Marcus, M., Palmer, M., Weischedel, R., Xue, N.: CoNLL-2011 shared task: Modeling unrestricted coreference in ontonotes. In: Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. CONLL Shared Task 2011, Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 1–27 (2011)Google Scholar
  7. 7.
    Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L.: A model-theoretic coreference scoring scheme. In: Proceedings of the 6th Message Understanding Conference (MUC-6), pp. 45–52 (1995)Google Scholar
  8. 8.
    Bagga, A., Baldwin, B.: Algorithms for scoring coreference chains. In: The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, pp. 563–566 (1998)Google Scholar
  9. 9.
    Luo, X.: On coreference resolution performance metrics. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, Vancouver, Canada, Association for Computational Linguistics, pp. 25–32 (2005)Google Scholar
  10. 10.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  11. 11.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  12. 12.
    Ogrodniczuk, M., Głowińska, K., Kopeć, M., Savary, A., Zawisławska, M.: Interesting linguistic features in coreference annotation of an inflectional language. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds.) CCL and NLP-NABD 2013. LNCS, vol. 8202, pp. 97–108. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Woliński, M.: Morfeusz - a practical tool for the morphological analysis of polish. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Proceedings of the International Intelligent Information Systems: Intelligent Information Processing and Web Mining’06 Conference, pp. 511–520. Wisła, Poland (June (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computer Science Polish Academy of SciencesWarsawPoland

Personalised recommendations