Clinical Perspectives in Diagnostic-omics and Personalized Medicine Approach to Monitor Effectiveness and Toxicity of Phytocomplexes

  • Alessandro BurianiEmail author
  • Stefano Fortinguerra
  • Maria Carrara


The advances of systems medicine and network pharmacotoxicology, as well as 'omics diagnostic techniques, or “diagnostic-omics,” nowadays provide formidable new strategies and tools for a guided and assisted use of phytocomplexes. At the same time, personalized medicine might promote a larger and better use of medicinal plants, especially for prevention and wellness. Despite the increasingly information available from systems medicine, research is not yet fully exploited in the clinic, although the introduction of diagnostic-omics in routine medical care is becoming more relevant and meaningful every day, especially in pharmacotoxicology, and clinical pharmaco/toxico-genomics are increasingly performed for a more effective and safer use of drugs and medicinal plants.

In the last 20 years, at least two major scientific advances provided a major contribution to the present situation: the simultaneous detection of entire molecular families in a given biological system, and the ability to collect, classify, network, and visualize an unexpectedly large amount of analytical data through bio-informatics. The genomics area has been at the vanguard of this evolution. Currently, whole genome sequencing allows the identification of clinically actionable genetic information and is included in all major prospective studies that focus on personalized and precision medicine. Other “'omics” techniques, such as proteomics and metabonomics (except for a few meaningful examples such as lipidomics), although developed to high-quality standards and considered to be key operating procedures in systems medicine research, are still in the pipeline to be applied routinely in a clinical setting.

“'Omics” techniques are particularly appropriate for analyzing the biological effects of herbal drugs, which have multiple concomitant effects on several molecular targets. 'Omics techniques can assess simultaneous molecular effects, and bio-informatics allows researchers to look at such effects with a global view of the biological system. This approach is even more relevant when using multi-herbal mixtures, as in traditional medicines where plants are often used as blended herbal preparations − sometimes consisting of mixtures of mixtures − with each herbal component exerting its specific role, either as an effector, an enhancer, or a mitigator.

Systems biology-oriented P4 personalized (and precision) medicine can be envisioned as an ultra-advanced holistic approach to the patients who, based on their individual characteristics, can be monitored for prominent risk factors and treated using targeted therapies. The ability to identify individual health risk factors from the molecular to the environmental level is progressively leading to a shift from medicine to proactive medicine, and preventive and pre-emptive medicine. In this context, traditional herbal medicines, highly personalized in their approach and with the information that they provide on preventative strategies, can be exploited for integrative strategies, aimed at combining the best of deterministic and holistic medical traditions. The increase in the use of herbal medicines, while introducing new therapeutic strategies and potentiating those available, at the same time raises safety concerns that need to be addressed and managed to assure a positive balance between benefits and risks when using herbal products. In a fully personalized context, genetic profiling and a pharmaco-toxicological characterization of the patient should be performed before prescribing or administering any herbal product − especially if other drugs or herbs are being taken − given the potential inter-molecular pharmacokinetic and toxicologic interference.

A step-by-step description of the patient management in a personalized medicine context has finally been suggested, to explain how diagnostic-omics of pharmaco-toxicological interest can be applied when using herbal prescriptions. Key moments are highlighted, from taking a family history, to risk evaluation, to medication reconciliation. An example of how a future systems medicine approach could be introduced is also given, as well as how various diagnostic-omics profiling can be performed longitudinally in the same subject, so as to characterize the pharmaco-toxicological networks of the patient and then use them for personalization of therapy, toxicity prediction, and monitoring when using phytocomplexes.


'Omics Companion diagnostics Personalized medicine Pharmacogenomics Genomics Whole genome sequencing Natural drugs Personalized medicine Proteomics Metabonomics Metabolomics Microbiome Systems biology Network pharmacology Network toxicology Herbal medicines Phytocomplex Precision medicine P4 medicine Holistic Proactive Prevention Traditional Chinese medicine Health risk assessment Family health history Genetic profiling Medication reconciliation 



Big data to knowledge initiative


Best medication history


Clinical decision support systems


Clinical genomic database


Drug-induced liver injury


Dietary Supplement Health and Education Act


Evidence-based medicine


European Science Foundation


Food and Drug Administration


Electronic health records


Hundred person wellness project


Health risk assessment


Integrative Human Microbiome Project =


Integrative personal omics profile


Kyoto Encyclopedia of Genes and Genomes


UK National Health System


US National Institutes of Health


Nuclear magnetic resonance

N-of-1 RCTs

Single case randomized controlled trials

P4 medicine

Predictive, preventive, personalized, participatory medicine


Personalized medicine coalition


Single nucleotide polymorphisms


Traditional Chinese medicine


Traditional Chinese medicine systems pharmacology database


Whole exome sequencing


Whole genome sequencing


World Health Organization



We would like to thank Roberta Sato at the Library of the Department of Pharmaceutical and Pharmacological Sciences of the University of Padova for her technical assistance with database search and bibliography, and Mariagnese Barbera for text revision.

Conflict of Interest

Alessandro Buriani and Stefano Fortinguerra are in charge of the Personalized Medicine Service of the Gruppo Data Medica Padova.


  1. Abdel-Rahman A, Anyangwe N, Carlacci L et al (2011) The safety and regulation of natural products used as foods and food ingredients. Toxicol Sci 123:333–348. doi: 10.1093/toxsci/kfr198 PubMedCrossRefGoogle Scholar
  2. Agarwal A, Ressler D, Snyder G (2015) The current and future state of companion diagnostics. Pharmgenomics Pers Med 8:99–110. doi: 10.2147/PGPM.S49493 PubMedPubMedCentralGoogle Scholar
  3. Ahn AC, Tewari M, Poon CS et al (2006) The clinical applications of a systems approach. PLoS Med 3:956–960. doi: 10.1039/C0AN00746C Google Scholar
  4. Ainslie GR, Wolf KK, Li Y et al (2014) Assessment of a candidate marker constituent predictive of a dietary substance-drug interaction: case study with grapefruit juice and CYP3A4 drug substrates. J Pharmacol Exp Ther 51:576–584. doi: 10.1124/jpet.114.216838 CrossRefGoogle Scholar
  5. Alinejad-Mofrad S, Foadoddini M, Saadatjoo SA et al (2015) Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: a randomized controlled-trial. J Diabetes Metab Disord 14:22. doi: 10.1186/s40200-015-0137-2
  6. Allyse M, Minear MA, Berson E et al (2015) Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 7:113–126. doi: 10.2147/IJWH.S67124 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics 8:33. doi: 10.1186/s12920-015-0108y PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313:2119–2120. doi: 10.1001/jama.2015.3595 PubMedCrossRefGoogle Scholar
  9. Ashley EA, Butte AJ, Wheeler MT et al (2010) Clinical evaluation incorporating a personal genome. Lancet 375:1525–1535. doi: 10.1016/S0140-6736(10)60452-7 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Auffray C, Charron D, Hood L (2010) Predictive, preventive, personalized and participatory medicine: back to the future. Genome Med 2:57. doi: 10.1186/gm178 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bahmani M, Shirzad H, Mirhosseini M et al (2015) A review on ethnobotanical and therapeutic uses of Fenugreek (Trigonella foenum-graceum L). J Evid Based Complement Altern Med. doi: 10.1177/2156587215583405 Google Scholar
  12. Ball MP, Thakuria JV, Zaranek AW et al (2012) A public resource facilitating clinical use of genomes. Proc Natl Acad Sci USA 109:11920–11927. doi: 10.1073/pnas.1201904109 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ball MP, Bobe JR, Chou MF et al (2014) Harvard Personal Genome Project: lessons from participatory public research. Genome Med 6:10. doi: 10.1186/gm527 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Banerjeea S, Debnathb P, Kumar Debnathc P (2015) Ayurnutrigenomics: Ayurveda-inspired personalized nutrition from inception to evidence. J Tradit Complement Med 5:228–233. doi: 10.1016/j.jtcme.2014.12.009 CrossRefGoogle Scholar
  15. Bauer C, Stec K, Glintschert A et al (2015) BioMiner: paving the way for personalized medicine. Cancer Informat 14:55–63. doi: 10.4137/CIN.S20910 Google Scholar
  16. Best MG, Sol N, Kooi I et al (2015) RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28:1–11. doi: 10.1016/j.ccell.2015.09.018 CrossRefGoogle Scholar
  17. Boissel JP, Auffray C, Noble D et al (2015) Bridging systems medicine and patient needs. CPT Pharmacometrics Syst Pharmacol 4:135–145. doi: 10.1002/psp4.26 CrossRefGoogle Scholar
  18. Bouhifd M, Hogberg HT, Kleensang A et al (2014) Mapping the human toxome by systems toxicology. Basic Clin Pharmacol Toxicol 115:24–31. doi: 10.1111/bcpt.12198 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bragazzi NL (2013) From P0 to P6 medicine, a model of highly participatory, narrative, interactive, and “augmented” medicine: some considerations on Salvatore Iaconesi’s clinical story. Patient Prefer Adherence 7:353–359. doi: 10.2147/PPA.S38578 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Buriani A, Fortinguerra S (2015) The systems biology oriented, holistic vision of personalized medicine and the emerging concept of proactive herbal medicine. J Int Med 1(2):007–009Google Scholar
  21. Buriani A, Garcia-Bermejo ML, Bosisio E et al (2012) Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol 140:535–544. doi: 10.1016/j.jep.2012.01.055 PubMedCrossRefGoogle Scholar
  22. Burokas A, Moloney RD, Dinan TG et al (2015) Microbiota regulation of the Mammalian gut-brain axis. Adv Appl Microbiol 91:1–62. doi: 10.1016/bs.aambs.2015.02.001 PubMedCrossRefGoogle Scholar
  23. Calabrese B, Cannataro M (2015) Bioinformatics and microarray data analysis on the cloud. In: Methods Mol Biol. Springer Ed. Walker JM. pp 1–15. doi: 10.1007/7651_2015_236
  24. Castaneda C, Nalley K, Mannion C et al (2015) Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma 26:5–14. doi: 10.1186/s13336-015-0019-3 Google Scholar
  25. Chadwick LH (2012) The NIH roadmap epigenomics program data resource. Epigenomics 4:317–324. doi: 10.2217/epi.12.18 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chatterjee R, Gupta B, Bose S (2015) Oral screening for pre-cancerous lesions among areca-nut chewing population from rural India. Oral Health Prev Dent. doi: 10.3290/j.ohpd.a34052 PubMedGoogle Scholar
  27. Chen R, Mias G, Li-Pook-Than J et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307. doi: 10.1016/j.cell.2012.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen YC, Douville C, Wang C et al (2014) A probabilistic model to predict clinical phenotypic traits from genome sequencing. PLoS Comput Biol 10:e1003825. doi: 10.1371/journal.pcbi.1003825 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cheng R, Leung RK, Chen Y et al (2015) Virtual pharmacist: a platform for pharmacogenomics. PLoS One 10:e0141105. doi: 10.1371/journal.pone.0141105 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chiappelli F, Prolo P, Cajulis OS (2005) Evidence-based research in complementary and alternative medicine I: history. Evid Based Complement Altern Med 2:453–458. doi: 10.1093/ecam/neh106 CrossRefGoogle Scholar
  31. Clayton TA, Lindon JC, Cloarec O et al (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077PubMedCrossRefGoogle Scholar
  32. Cock IE (2015) The safe usage of herbal medicines: counter-indications, cross-reactivity and toxicity. Pharmacogn Commun 5:2–38. doi: 10.5530/pc.2015.1.2 CrossRefGoogle Scholar
  33. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. doi: 10.1056/NEJMp1500523 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cutica I, Vie GM, Pravettoni G (2014) Personalised medicine: the cognitive side of patients. Eur J Intern Med 25:685–688. doi: 10.1016/j.ejim.2014.07.002 PubMedCrossRefGoogle Scholar
  35. D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451(Pt A):97–102. doi: 10.1016/j.cca.2015.01.003 PubMedCrossRefGoogle Scholar
  36. Dopazo J (2014) Genomics and transcriptomics in drug discovery. Drug Discov Today 19:126–132. doi: 10.1016/j.drudis.2013.06.003 PubMedCrossRefGoogle Scholar
  37. Dunn WB, Lin W, Broadhurst D et al (2015) Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics 11:9–26. doi: 10.1007/s11306-014-0707-1 PubMedCrossRefGoogle Scholar
  38. Efferth T, Koch E (2011) Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 12:122–123PubMedCrossRefGoogle Scholar
  39. ESF Forward Look (2012) Personalised medicine for the European citizen. Towards more precise medicine for the diagnosis, treatment and prevention of disease (iPM). European Science Foundation, Strasbourg, Google Scholar
  40. Evans WE, McLeod HL (2003) Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 348:538–549. doi: 10.1056/NEJMra020526 PubMedCrossRefGoogle Scholar
  41. Fasinu PS, Bouic PJ, Rosenkranz B (2012) An overview of the evidence and mechanisms of herb-drug interactions. Front Pharmacol 3:69. doi: 10.3389/fphar.2012.00069 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Flores M, Glusman G, Brogaard K et al (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Pers Med 10:565–576CrossRefGoogle Scholar
  43. Fortinguerra S, Varano G, Buriani A (2015) Antiplatelet pharmacogenomic assessment in a case of coronary artery bypass. J Int Med 1(2):009–012Google Scholar
  44. Fox JL (2015) Obama catapults patient-empowered precision medicine. Nat Biotechnol 33:325. doi: 10.1038/nbt0415-325 PubMedCrossRefGoogle Scholar
  45. Fox CS, Hall JL, Arnett DK et al (2015) Future translational applications from the contemporary genomics era: a scientific statement from the American Heart Association. Circulation 131:1715–1736. doi: 10.1161/CIR.0000000000000211 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fryburg DA, Song DH, Laifenfeld D et al (2014) Systems diagnostics: anticipating the next generation of diagnostic tests based on mechanistic insight into disease. Drug Discov Today 19:108–112. doi: 10.1016/j.drudis.2013.07.006 PubMedCrossRefGoogle Scholar
  47. Gardeux V, Achour I, Li J et al (2014) ‘N-of-1-pathways’ unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: towards precision medicine. J Am Med Inform Assoc 21:1015–1025. doi: 10.1136/amiajnl-2013-002519 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ghosh S, Matsuoka Y, Asai Y et al (2011) Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12:821–832. doi: 10.1038/nrg3096 PubMedGoogle Scholar
  49. Gibbs DL, Gralinski L, Baric RS et al (2014) Multi-omic network signatures of disease. Front Genet 4:309. doi: 10.3389/fgene.2013.00309 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gibson JB, Jiang R, Yu F (2013) The 1000 Genomes Project: paving the way for personalized genomic medicine. Pers Med 10:321–324CrossRefGoogle Scholar
  51. Gierman HJ, Fortney K, Roach JC et al (2014) Whole-genome sequencing of the world’s oldest people. PLoS One 9:e112430. doi: 10.1371/journal.pone.0112430 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gonzalez-Garay ML (2014) The road from next-generation sequencing to personalized medicine. Pers Med 11:523–544CrossRefGoogle Scholar
  53. Gorini A, Pravettoni G (2011) P5 medicine: a plus for a personalized approach to oncology. Nat Rev Clin Oncol 8:444. doi: 10.1038/nrclinonc.2010.227-c1 PubMedCrossRefGoogle Scholar
  54. Greshake B, Bayer PE, Rausch H et al (2014) openSNP – a crowdsourced web resource for personal genomics. PLoS One 9:e89204. doi: 10.1371/journal.pone.0089204 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gudbjartsson DF, Helgason H, Gudjonsson SA et al (2015) Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47:435–444. doi: 10.1038/ng.3247 PubMedCrossRefGoogle Scholar
  56. Guo L, Du Y, Chang S et al (2014) rSNPBase: a database for curated regulatory SNPs. Nucleic Acids Res 42(Database issue):D1033–D1039. doi: 10.1093/nar/gkt1167 PubMedCrossRefGoogle Scholar
  57. Gupta PD (2015) Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: a paradigm shift. Indian J Pharm Sci 77:135–141PubMedPubMedCentralCrossRefGoogle Scholar
  58. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. doi: 10.1038/nrd4510 PubMedCrossRefGoogle Scholar
  59. Henry VJ, Bandrowski AE, Pepin AS et al. (2014) OMICtools: an informative directory for multi-omic data analysis. Database 2014. pii: bau069. doi: 10.1093/database/bau069
  60. Hernansaiz-Ballesteros RD, Salavert F, Sebastián-León P et al (2015) Assessing the impact of mutations found in next generation sequencing data over human signaling pathways. Nucleic Acids Res 43(W1):W270–W275. doi: 10.1093/nar/gkv349 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hood L (2008) A personal journey of discovery: developing technology and changing biology. Annu Rev Anal Chem (Palo Alto Calif) 1:1–43. doi: 10.1146/annurev.anchem.1.031207.113113 CrossRefGoogle Scholar
  62. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 29:613–624. doi: 10.1016/j.nbt.2012.03.004 PubMedCrossRefGoogle Scholar
  63. Hood L, Lovejoy JC, Price ND (2015) Integrating big data and actionable health coaching to optimize wellness. BMC Med 13:4. doi: 10.1186/s12916-014-0238-7 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu M, Fan L, Zhou HH, Tomlinson B (2012) Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interactions. Expert Rev Mol Diagn 12:815–830. doi: 10.1586/erm.12.126 PubMedCrossRefGoogle Scholar
  65. Huang H, Yang P, Xue J et al (2014) Evaluating the individualized treatment of traditional Chinese medicine: a pilot study of N-of-1 trials. Evid Based Complement Altern Med 2014, 148730. doi: 10.1155/2014/148730 Google Scholar
  66. Hun Lee J, Shu L, Fuentes F et al (2013) Cancer chemoprevention by traditional Chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med 3:69–79. doi: 10.4103/2225-4110.107700 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Integrative HMP (iHMP) Research Network Consortium (2014) The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289. doi: 10.1016/j.chom.2014.08.014 CrossRefGoogle Scholar
  68. Jafari S, Abdollahi M, Saeidnia S (2014) Personalized medicine: a confluence of traditional and contemporary medicine. Altern Ther Health Med 20:31–40PubMedGoogle Scholar
  69. Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. NEJM 372:2229–2234. doi: 10.1056/NEJMsb1503104 PubMedCrossRefGoogle Scholar
  70. Ji B, Nielsen J (2015) New insight into the gut microbiome through metagenomics. Adv Genom Genet 5:77–91. doi: 10.2147/AGG.S57215 Google Scholar
  71. Jiang M, Lu C, Zhang C et al (2012) Syndrome differentiation in modern research of traditional Chinese medicine. J Ethnopharmacol 140:634–642. doi: 10.1016/j.jep.2012.01.033 PubMedCrossRefGoogle Scholar
  72. Kell DB, Goodacre R (2014) Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 19:171–182. doi: 10.1016/j.drudis.2013.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Khoury MJ, Gwinn ML, Glasgow RE et al (2012) A population approach to precision medicine. Am J Prev Med 42:639–645. doi: 10.1016/j.amepre.2012.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Landis-Piwowar KR, Iyer NR (2014) Cancer chemoprevention: current state of the art. Cancer Growth Metastasis 7:19–25. doi: 10.4137/CGM.S11288 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li A, Meyre D (2014) Jumping on the train of personalized medicine: a primer for non-geneticist clinicians: part 3. Clinical applications in the personalized medicine area. Curr Psychiatry Rev 10:101–117PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li Y, Wu YL (2003) An over four millennium story behind qinghaosu (artemisinin) – a fantastic antimalarial drug from a traditional Chinese herb. Curr Med Chem 10:2197–2230. doi: 10.2174/0929867033456710 PubMedCrossRefGoogle Scholar
  77. Li X, Lian FM, Guo D et al (2013) The rs1142345 in TPMT affects the therapeutic effect of traditional hypoglycemic herbs in prediabetes. Evid Based Complement Altern Med 2013, 327629. doi: 10.1155/2013/327629 Google Scholar
  78. Lin LL, Wang YH, Lai CY et al (2012) Systems biology of meridians, acupoints, and Chinese herbs in disease. Evid Based Complement Altern Med 2012, 372670. doi: 10.1155/2012/372670 Google Scholar
  79. Liu J, Sun K, Zheng C et al (2015) Pathway as a pharmacological target for herbal medicines: an investigation from reduning injection. PLoS One 10:e0123109. doi: 10.1371/journal.pone.0123109 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lowry CM, Kostka-Rokosz MD, McCloskey WW (2003) Evaluation of personal digital assistant drug information databases for the managed care pharmacist. J Manag Care Pharm 9:441–448PubMedGoogle Scholar
  81. Lv W, Piao JH, Jiang JG (2012) Typical toxic components in traditional Chinese medicine. Expert Opin Drug Saf 11:985–1002. doi: 10.1517/14740338.2012.726610 PubMedCrossRefGoogle Scholar
  82. Mackay DS, Gebauer SK, Eck PK et al (2015) Lathosterol-to-cholesterol ratio in serum predicts cholesterol-lowering response to plant sterol consumption in a dual-center, randomized, single-blind placebo-controlled trial. Am J Clin Nutr 101:432–439. doi: 10.3945/ajcn.114.095356 PubMedCrossRefGoogle Scholar
  83. Mahapatra S, Kamath R, Shetty BK et al (2015) Risk of oral cancer associated with gutka and other tobacco products: a hospital-based case-control study. J Cancer Res Ther 11:199–203. doi: 10.4103/09731482.143332 PubMedCrossRefGoogle Scholar
  84. Margolis R, Derr L, Dunn M et al (2014) The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc 21:957–958. doi: 10.1136/amiajnl-2014-002974 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Markert C, Ngui P, Hellwig R et al (2014) Influence of St. John’s wort on the steady-state pharmacokinetics and metabolism of bosentan. Int J Clin Pharmacol Ther 52:328–336. doi: 10.5414/CP202048 PubMedCrossRefGoogle Scholar
  86. Mason CE, Porter SG, Smith TM (2014) Characterizing multi-omic data in systems biology. Adv Exp Med Biol 799:15–38. doi: 10.1007/978-1-4614-8778-4_2 PubMedCrossRefGoogle Scholar
  87. Meisel SF, Carere DA, Wardle J et al (2015) Explaining, not just predicting, drives interest in personal genomics. Genome Med 7:74. doi: 10.1186/s13073-015-0188-5 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mias GI, Snyder M (2013) Personal genomes, quantitative dynamic omics and personalized medicine. Quant Biol 1:71–90. doi: 10.1007/s40484-013-0005-3 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Min YW, Rhee PL (2015) The role of microbiota on the gut immunology. Clin Ther 37:968–975. doi: 10.1016/j.clinthera.2015.03.009 PubMedCrossRefGoogle Scholar
  90. Montani F, Marzi MJ, Dezi F et al (2015) miR-test: a blood test for lung cancer early detection. J Natl Cancer Inst 107:djv063. doi: 10.1093/jnci/djv063 PubMedCrossRefGoogle Scholar
  91. Mucalo I, Jovanovski E, Rahelić D et al (2013) Effect of American ginseng (Panax quinquefolius L.) on arterial stiffness in subjects with type-2 diabetes and concomitant hypertension. J Ethnopharmacol 150:148–153. doi: 10.1016/j.jep.2013.08.015 PubMedCrossRefGoogle Scholar
  92. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. doi: 10.1038/msb4100095 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Normile D (2015) DRUG DISCOVERY. Nobel for antimalarial drug highlights East-West divide. Science 350:265. doi: 10.1126/science.350.6258.265 PubMedCrossRefGoogle Scholar
  94. Panahiazar M, Taslimitehrani V, Jadhav A (2014) Empowering personalized medicine with big data and semantic web technology: promises, challenges, and use cases. Proc IEEE Int Conf Big Data 2014:790–795. doi: 10.1109/BigData.2014.7004307 PubMedPubMedCentralGoogle Scholar
  95. Personalized Medicine Coalition (2014) The case for personalized medicine, 4th edn. Personalized Medicine Coalition, Washington, DC, Google Scholar
  96. Qi Z, Kelley E (2014) The WHO traditional medicine strategy 2014-2023: a perspective. Science 346:S5–S6Google Scholar
  97. Ramjaun A, Sudarshan M, Patakfalvi L et al (2015) Educating medical trainees on medication reconciliation: a systematic review. BMC Med Educ 15:33. doi: 10.1186/s12909-015-0306-5 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rasool M, Malik A, Naseer MI et al (2015) The role of epigenetics in personalized medicine: challenges and opportunities. BMC Med Genomics 8:S5. doi: 10.1186/1755-8794-8-S1-S5 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ritchie MD, de Andrade M, Kuivaniemi H (2015) The foundation of precision medicine: integration of electronic health records with genomics through basic, clinical, and translational research. Front Genet 6:104. doi: 10.3389/fgene.2015.00104 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Roberts JS, Ostergren J (2013) Direct-to-consumer genetic testing and personal genomics services: a review of recent empirical studies. Curr Genet Med Rep 1:182–200PubMedPubMedCentralCrossRefGoogle Scholar
  101. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822. doi: 10.1093/toxsci/kfi102 PubMedCrossRefGoogle Scholar
  102. Schröder T, Hubold C, Muck P et al (2015) A hypertensive emergency with acute visual impairment due to excessive liquorice consumption. Neth J Med 73:82–85PubMedGoogle Scholar
  103. Schroën Y, van Wietmarschen HA, Wang M et al (2015) East is East and West is West, and never the twain shall meet? Science 346(6216 Suppl):S10–S12Google Scholar
  104. Scott SA (2011) Personalizing medicine with clinical pharmacogenetics. Genet Med 13:987–995. doi: 10.1097/GIM.0b013e318238b38c PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shankar S, Kumar D, Srivastava RK (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138:1–17. doi: 10.1016/j.pharmthera.2012.11.002 PubMedCrossRefGoogle Scholar
  106. Shukla SK, Murali NS, Brilliant MH (2015) Personalized medicine going precise: from genomics to microbiomics. Trends Mol Med 21:461–462. doi: 10.1016/j.molmed.2015.06.002 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Siva N (2015) UK gears up to decode 100,000 genomes from NHS patients. Lancet 385(9963):103–104. doi: 10.1016/S0140-6736(14)62453-3 PubMedCrossRefGoogle Scholar
  108. Skipper M, Eccleston A, Gray N et al (2015) Presenting the epigenome roadmap. Nature 518:313. doi: 10.1038/518313a PubMedCrossRefGoogle Scholar
  109. Smith TD, Vihinen M on Behalf of the Human Variome Project (2015) Standard development at the human variome project. Database 2015:1–5. doi: 10.1093/database/bav024
  110. Solomon BD, Nguyen AD, Bear KA et al (2013) Clinical genomic database. Proc Natl Acad Sci USA 110:9851–9855. doi: 10.1073/pnas.1302575110 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sookoian S, Pirola CJ (2015) Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J Gastroenterol 21:711–725. doi: 10.3748/wjg.v21.i3.711 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sturla SJ, Boobis AR, FitzGerald RE et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27:314–329. doi: 10.1021/tx400410s PubMedPubMedCentralCrossRefGoogle Scholar
  113. Su XZ, Miller LH (2015) The discovery of artemisinin and the Nobel Prize in physiology or medicine. Sci China Life Sci. doi: 10.1007/s11427-015-4948-7 PubMedCentralGoogle Scholar
  114. Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779. doi: 10.1371/journal.pmed.1001779 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Swen JJ, Nijenhuis M, de Boer A et al (2011) Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther 89:662–673. doi: 10.1038/clpt.2011.34 PubMedCrossRefGoogle Scholar
  116. Tada T (2004) Toward the philosophy of CAM: super-system and epimedical sciences. Evid Based Complement Altern Med 1:5–8. doi: 10.1093/ecam/neh012 CrossRefGoogle Scholar
  117. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34:753–764. doi: 10.1016/j.mam.2012.07.018 PubMedCrossRefGoogle Scholar
  118. Tiwari P, Mishra BN, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 2014, 830285. doi: 10.1155/2014/830285 PubMedPubMedCentralGoogle Scholar
  119. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220. doi: 10.1038/nm.2471 PubMedCrossRefGoogle Scholar
  120. Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  121. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419. doi: 10.1126/science.1260419Proteomics PubMedCrossRefGoogle Scholar
  122. Van Galen E (2014) Traditional herbal medicines worldwide, from reappraisal to assessment in Europe. J Ethnopharmacol 158(Pt B):498–502. doi: 10.1016/j.jep.2014.07.013 PubMedCrossRefGoogle Scholar
  123. Wang J, Xiong X (2012) Current situation and perspectives of clinical study in integrative medicine in China. Evid Based Complement Altern Med 2012, 268542. doi: 10.1155/2012/268542 Google Scholar
  124. Wang Y, Xu A (2015) Zheng: a systems biology approach to diagnosis and treatments. Science 346:S13–S15Google Scholar
  125. Wang S, Penchala S, Prabhu S et al (2010) Molecular basis of traditional Chinese medicine in cancer chemoprevention. Curr Drug Discov Technol 7:67–75PubMedCrossRefGoogle Scholar
  126. Wang L, McLeod HL, Weinshilboum RM (2011) Genomics and drug response. N Engl J Med 364:1144–1153. doi: 10.1056/NEJMra1010600 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang X, Zhang A, Sun H (2012) Future perspectives of Chinese medical formulae: chinmedomics as an effector. OMICS 16:414–421. doi: 10.1089/omi.2011.0138 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wang C, Sen A, Plegue M et al (2015a) Impact of family history assessment on communication with family members and health care providers: a report from the Family Healthware™ Impact Trial (FHITr). Prev Med. doi: 10.1016/j.ypmed.2015.04.007, pii:S0091-7435(15)00113-9Google Scholar
  129. Wang RS, Maron BA, Loscalzo J (2015b) Systems medicine: evolution of systems biology from bench to bedside. Wiley Interdiscip Rev Syst Biol Med. doi: 10.1002/wsbm.1297 PubMedPubMedCentralGoogle Scholar
  130. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948. doi: 10.1038/nrg1493 PubMedCrossRefGoogle Scholar
  131. Wei WQ, Denny JC (2015) Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med 7:41. doi: 10.1186/s13073-015-0166-y PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143:888–895. doi: 10.1016/j.cell.2010.11.033 PubMedCrossRefGoogle Scholar
  133. Weston AD, Hood LJ (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. Proteome Res 3:179–196CrossRefGoogle Scholar
  134. Whirl-Carrillo M, McDonagh EM, Hebert JM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417. doi: 10.1038/clpt.2012.96 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Williamson EM, Chan K, Xu Q (2015) Evaluating the safety of herbal medicines: integrated toxicological approaches. Science 347:S47–S49Google Scholar
  136. Witt CM, Liu J, Robinson N (2015) Combining ’omics and comparative effectiveness research: evidence-based clinical research decision-making for Chinese medicine. Science 346(6216 Suppl):S10–S12Google Scholar
  137. Wu X, Patterson S, Hawk E (2011) Chemoprevention – history and general principles. Best Pract Res Clin Gastroenterol 25:445–459. doi: 10.1016/j.bpg.2011.10.012 PubMedCrossRefGoogle Scholar
  138. Wu IC, Lin CC, Hsiung CA (2015) Emerging roles of frailty and inflammaging in risk assessment of age-related chronic diseases in older adults: the intersection between aging biology and personalized medicine. Biomedicine (Taipei) 5:1. doi: 10.7603/s40681-015-0001-1 CrossRefGoogle Scholar
  139. Xu H, Chen KJ (2010) Making evidence-based decisions in the clinical practice of integrative medicine. Chin J Integr Med 16:483–485. doi: 10.1007/s11655-010-0560-7 PubMedCrossRefGoogle Scholar
  140. Yang CC (2014) Patient centered healthcare informatics. IEEE Intell Informa Bull 15:1–5Google Scholar
  141. Yang B, Li X, Zhang C et al (2015) Design, synthesis and biological evaluation of novel peptide MC2 analogues from Momordica charantia as potential anti-diabetic agents. Org Biomol Chem 13:4551–4561. doi: 10.1039/c5ob00333d PubMedCrossRefGoogle Scholar
  142. Yip V, Hawcutt DB, Pirmohamed M (2015) Pharmacogenetic markers of drug efficacy and toxicity. Clin Pharmacol Ther 98:61–70. doi: 10.1002/cpt.135 PubMedCrossRefGoogle Scholar
  143. Zhou J, Xu G, Yan J et al (2015) Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J Ethnopharmacol 164:229–238. doi: 10.1016/j.jep.2015.02.026 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alessandro Buriani
    • 1
    • 2
    Email author
  • Stefano Fortinguerra
    • 1
    • 2
  • Maria Carrara
    • 2
  1. 1.Center Maria Paola Belloni Regazzo for Pharmacogenomics and Personalized MedicineGruppo Data MedicaPadovaItaly
  2. 2.Department of Pharmacological and Pharmaceutical SciencesUniversity of PadovaPadovaItaly

Personalised recommendations