Reality Construction in Cognitive Agents Through Processes of Info-computation

  • Gordana Dodig-CrnkovicEmail author
  • Rickard von Haugwitz
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 28)


What is reality for an agent? What is minimal cognition? How does the morphology of a cognitive agent affect cognition? These are still open questions among scientists and philosophers. In this chapter we propose the idea of info-computational nature as a framework for answering those questions. Within the info-computational framework, information is defined as a structure (for an agent), and computation as the dynamics of information (information processing). To an agent, nature therefore appears as an informational structure with computational dynamics. Both information and computation in this context have broader meaning than in everyday use, and both are necessarily grounded in physical implementation. Evolution of increasingly complex living agents is understood as a process of morphological (physical, embodied) computation driven by agents’ interactions with the environment. It is a process much more complex than random variation; instead the mechanisms of change are morphological computational processes of self-organisation (and re-organisation). Reality for an agent emerges as a result of interactions with the environment together with internal information processing. Following Maturana and Varela, we take cognition to be the process of living of an organism, and thus it appears on different levels of complexity, from cellular via organismic to social. The simpler the agent, the simpler its “reality” defined by the network of networks of info-computational processes, which constitute its cognition. The debated topic of consciousness takes its natural place in this framework, as a process of information integration that we suggest naturally evolved in organisms with a nervous system. Computing nature/pancomputationalism is sometimes confused with panpsychism or claimed to necessarily imply panpsychism, which we show is not the case. Even though we focus on natural systems in this chapter, the info-computational approach is general and can be used to model both biological and artifactual cognitive agents.



The authors want to thank the reviewers Jan van Leeuwen, Marcin Schroeder, Matej Hoffmann, Raffaela Giovagnoli and Tom Froese for their constructive and very helpful comments.


  1. 1.
    Horsman, C., Stepney, S., Wagner, R., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)CrossRefGoogle Scholar
  2. 2.
    Burgin, M., Dodig-Crnkovic, G.: A taxonomy of computation and information architecture. In: Galster, M. (ed.) Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW’ 15), ACM Press, New York (2015)Google Scholar
  3. 3.
    Dodig-Crnkovic, G.: Significance of models of computation, from turing model to natural computation. Mind Mach. 21(2), 301–322 (2011)CrossRefGoogle Scholar
  4. 4.
    Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognit. 28, 3–71 (1988)CrossRefGoogle Scholar
  5. 5.
    Maturana, H., Varela, F.: Autopoiesis and cognition: the realization of the living. D. Reidel, Dordrecht (1980)CrossRefGoogle Scholar
  6. 6.
    Stewart, J.: Cognition = life: implications for higher-level cognition. Behav. Process. 35, 311–326 (1996)CrossRefGoogle Scholar
  7. 7.
    Lorenz, H.: Ancient theories of soul. In: The Stanford Encyclopedia of Philosophy (2009)Google Scholar
  8. 8.
    Varela, F., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press (1991)Google Scholar
  9. 9.
    Vernon, D.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11(2), 151–180 (2007)CrossRefGoogle Scholar
  10. 10.
    Fresco, N.: Physical Computation and Cognitive Science. Springer (2014)Google Scholar
  11. 11.
    Bishop, M.: A cognitive computation fallacy? cognition, computations and panpsychism. Cognit. Comput. 1, 221–233 (2009)CrossRefGoogle Scholar
  12. 12.
    Dodig-Crnkovic, G.: Information, computation, cognition. Agency-based hierarchies of levels. In: Müller, V.C. (ed.) Fundamental Issues of Artificial Intelligence (Synthese Library). Springer (2014)Google Scholar
  13. 13.
    Fernandez, B., Xabier, E., Paolo, D., Rohde, M.: Defining agency: individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 17(5), 367–386 (2009)CrossRefGoogle Scholar
  14. 14.
    Cruse, H.: The evolution of cognition—a hypothesis. Cognit. Sci. 27, 135–155 (2003)Google Scholar
  15. 15.
    Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173, 466–500 (2009)CrossRefGoogle Scholar
  16. 16.
    Kauffman, S.: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)Google Scholar
  17. 17.
    Deacon, T.: Incomplete Nature. How Mind Emerged from Matter. W. W. Norton (2011)Google Scholar
  18. 18.
    Ben-Jacob, E., Shapira, Y., Tauber, A.I.: Smart bacteria. In: Margulis, L., Asikainen, C.A., Krumbein, W.E (eds.) Chimera and Consciousness. Evolution of the Sensory Self. MIT Press (2011)CrossRefGoogle Scholar
  19. 19.
    Ben-Jacob, E., Shapira, Y., Tauber, A.I.: Seeking the foundations of cognition in bacteria. Phys. A 359, 495–524 (2006)CrossRefGoogle Scholar
  20. 20.
    Maturana, H.: Autopoiesis, structural coupling and cognition: a history of these and other notions in the biology of cognition. Cybern. Hum. Knowing 9(3–4), 5–34 (2002)Google Scholar
  21. 21.
    Witzany, G.: Biocommunication and Natural Genome Editing. Springer (2010)CrossRefGoogle Scholar
  22. 22.
    Ng, W., Bassler, B.L.: Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009)CrossRefGoogle Scholar
  23. 23.
    Pratt, S.C.: Quorum sensing by encounter rates in the Ant Temnothorax-Albipennis. Behav. Ecol. 16(2), 488–496 (2005)CrossRefGoogle Scholar
  24. 24.
    Doya, K.: Metalearning and neuromodulation. Neural Netw. 15(4–6), 95–506 (2002)CrossRefGoogle Scholar
  25. 25.
    Dodig-Crnkovic, G.: Investigations into information semantics and ethics of computing. Zhurnal Eksperimental’noi I Teoreticheskoi Fiziki. Mälardalen University Press, Västerås, Sweden (2006).
  26. 26.
    Bull, L., Holley, J., Costello, B.D.L., Adamatzky, A.: Computing Nature, vol. 7. Springer, Berlin, Heidelberg (2013)Google Scholar
  27. 27.
    Dodig-Crnkovic, G.: Physical computation as dynamics of form that glues everything together. Information 3(4), 204–218 (2012)CrossRefGoogle Scholar
  28. 28.
    Landauer, R.: Computation: a fundamental physical view. Phys. Scr. 35, 88–95 (1987)CrossRefGoogle Scholar
  29. 29.
    Landauer, R.: Information is physical. Phys. Today 44, 23–29 (1991)CrossRefGoogle Scholar
  30. 30.
    Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Clark, A.: Being There: Putting Brain, Body and World Together Again. Oxford University Press (1997)Google Scholar
  32. 32.
    Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think—A New View of Intelligence. MIT Press (2006)Google Scholar
  33. 33.
    Hewitt, C.: What is computation? actor model versus Turing’s model. In: Zenil, H. (ed.) A Computable Universe, Understanding Computation & Exploring Nature as Computation. World Scientific Publishing, Imperial College Press (2012)CrossRefGoogle Scholar
  34. 34.
    Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. Intel. Agent 890, 56–70 (1995)CrossRefGoogle Scholar
  35. 35.
    Putnam, H.: Mathematics, Matter and Method. Cambridge University Press (1975)Google Scholar
  36. 36.
    Ganti, T.: The Principles of Life. Oxford University Press (2003)Google Scholar
  37. 37.
    Luisi, L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90, 49–59 (2003)Google Scholar
  38. 38.
    Ben-Jacob, E.: Bacterial complexity: more is different on all levels. In: Nakanishi, S., Kageyama, R., Watanabe, D. (eds.) Systems Biology—The Challenge of Complexity, pp. 25–35. Springer (2009)CrossRefGoogle Scholar
  39. 39.
    Ben-Jacob, E.: Learning from bacteria about natural information processing. Ann. N. Y. Acad. Sci. 1178, 78–90 (2009)CrossRefGoogle Scholar
  40. 40.
    Adamatzky, A.: Physarum Machines. Computers from Slime Mould. World Scientific (2010)Google Scholar
  41. 41.
    Pombo, O., Torres J.M., Symons J., Rahman S., (eds.): Special Sciences and the Unity of Science. Springer (2012)Google Scholar
  42. 42.
    Rosen, R.: Anticipatory Systems. Pergamon Press (1985)Google Scholar
  43. 43.
    Popper, K.: All Life Is Problem Solving. Routledge (1999)Google Scholar
  44. 44.
    Bohan B., Paul: On communication and computation. Mind Mach. 14(1), 1–19 (2004)Google Scholar
  45. 45.
    Shapiro, J.A.: Evolution: A View from the 21st Century. FT Press Science, New Jersey (2011)Google Scholar
  46. 46.
    Kauffman, S., Clayton, P.: On emergence, agency, and organization. Biol. Philos. 21(4), 500–520 (2006)CrossRefGoogle Scholar
  47. 47.
    Crutchfield, J., Ditto, W., Sinha, S.: Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems-beyond the digital hegemony. Chaos 20(3), 037101–037106 (2010)CrossRefGoogle Scholar
  48. 48.
    Crutchfield, J., Wiesner, K.: Intrinsic quantum computation. Phys. Lett. A 374(4), 375–380 (2008)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Clark, A.: Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. MIT Press (1989)Google Scholar
  50. 50.
    Rozenberg, G., Kari, L.: The many facets of natural computing. Commun. ACM 51, 72–83 (2008)Google Scholar
  51. 51.
    Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer (2012)Google Scholar
  52. 52.
    Denning, P.: Computing is a natural science. Commun. ACM 50(7), 13–18 (2007)CrossRefGoogle Scholar
  53. 53.
    Wang, Y.: On abstract intelligence: toward a unifying theory of natural, artificial, machinable, and computational intelligence. Int. J. Softw. Sci. Comput. Intel. 1(1), 1–17 (2009)CrossRefGoogle Scholar
  54. 54.
    Dodig-Crnkovic, G., Müller, V.: A dialogue concerning two world systems: info-computational vs. mechanistic. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation, pp. 149–184. World Scientific (2011)CrossRefGoogle Scholar
  55. 55.
    Pauen, M.: Reality and representation qualia, computers, and the ‘explanatory gap’. In: Riegler, A., Peschl, M., von Stein, A. (eds.) Understanding Representation in the Cognitive Sciences. Kluwer Academic/Plenum Publishers, New York (1999)Google Scholar
  56. 56.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity. Pergamon Press, Amsterdam (1991)Google Scholar
  58. 58.
    Kantor, F.W.: An informal partial overview of information mechanics. Int. J. Theor. Phys. 21(6–7), 525–535 (1982)CrossRefGoogle Scholar
  59. 59.
    Sloman, A.: Meta-morphogenesis: evolution and development of information-processing machinery. In: Cooper, S.B., van Leeuwen, J. (eds.) Alan Turing: His Work and Impact. Elsevier, Amsterdam (2013)Google Scholar
  60. 60.
    Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. Basic Books (2013)Google Scholar
  61. 61.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  62. 62.
    Chaitin, G.: Epistemology as information theory: from Leibniz to Ω. In: Dodig Crnkovic, G. (ed.) Computation, Information, Cognition—The Nexus and The Liminal, pp. 2–17. Cambridge Scholars Publishing (2007)Google Scholar
  63. 63.
    Dodig-Crnkovic, G.: Information and energy/matter. Information 3(4), 751 (2012)CrossRefGoogle Scholar
  64. 64.
    Floridi, L.: A defense of informational structural realism. Synthese 161(2), 219–253 (2008)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Sayre, K.M.: Cybernetics and the Philosophy of Mind. Routledge & Kegan Paul (1976)Google Scholar
  66. 66.
    Zeilinger, A.: The message of the quantum. Nature 438(7069), 743 (2005)CrossRefGoogle Scholar
  67. 67.
    Vedral, V.: Decoding Reality: The Universe as Quantum Information. Oxford University Press (2010)Google Scholar
  68. 68.
    Shannon, C.: Mathematical theory of the differential analyzer. J. Math. Phys. 20, 337–354 (1941)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Dodig-Crnkovic, G.: Epistemology naturalized: the info-computationalist approach. APA Newslett. Philos. Comput. 06(2), 9–13 (2007)Google Scholar
  70. 70.
    Dodig-Crnkovic, G.: Knowledge generation as natural computation. J. Syst. Cybernet. Inf. 6(3), 12–16 (2008)Google Scholar
  71. 71.
    Dodig-Crnkovic, G.: Info-computationalism and morphological computing of informational structure. In: Plamen, L. Simeonov, L., Smith, S., Ehresmann, A.C. (eds.) Integral Biomathics, pp. 97–104. Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  72. 72.
    Dodig-Crnkovic, G.: Dynamics of information as natural computation. Information 2(3), 460–477 (2011)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Bateson, G.: Steps to an ecology of mind: collected essays in anthropology, psychiatry, evolution, and epistemology. In: Adriaans, P., Benthem van, J. (eds.). University of Chicago Press, Amsterdam (1972)Google Scholar
  74. 74.
    McGonigle, D., Mastrian, K.: Introduction to information, information science, and information systems. In: Nursing Informatics and the Foundation of Knowledge, vol. 22. Jones & Bartlett (2012)Google Scholar
  75. 75.
    Hewitt, C.: What is commitment? physical, organizational, and social. In: Noriega, P., Vazquez-Salceda, J., Boella, G., Boissier, O., Dignum, V. (eds.) Coordination, Organizations, Institutions, and Norms in Agent Systems II, pp. 293–307. Springer, Berlin, Heidelberg (2007)CrossRefGoogle Scholar
  76. 76.
    Hauser, H., Füchslin, R.M., Pfeifer, R.: Opinions and Outlooks on Morphological Computation. e-book (2014)Google Scholar
  77. 77.
    Maturana, H., Varela, F.: The Tree of Knowledge. Shambala (1992)Google Scholar
  78. 78.
    Schroeder, M.: Dualism of selective and structural manifestations of information in modelling of information dynamics. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Computing Nature, SAPERE 7, pp. 125–137. Springer (2013)CrossRefGoogle Scholar
  79. 79.
    Grossberg, G.A., Carpenter, S.: ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26(23), 4919–4930 (1987)CrossRefGoogle Scholar
  80. 80.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.(ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley (1990)Google Scholar
  81. 81.
    Kantor, F.W.: Information Mechanics. Wiley-Interscience, New York (1977)Google Scholar
  82. 82.
    Dodig-Crnkovic, G., Giovagnoli, R.: Natural/unconventional computing and its philosophical significance. Entropy 14(12), 2408–2412 (2012)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(42), 1–22 (2004)Google Scholar
  84. 84.
    Tononi, G.: Consciousness as integrated information: a provisional manifesto. Bio. Bulletin 215(3), 216–242 (2008)CrossRefGoogle Scholar
  85. 85.
    Tononi, G.: The integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150(2/3), 290–326 (2012)Google Scholar
  86. 86.
    Koch, C.: Consciousness—Confessions of a Romantic Reductionist. MIT Press (2012)Google Scholar
  87. 87.
    Piccinini, G.: Computation in physical systems. In: The Stanford Encyclopedia of Philosophy (2012)Google Scholar
  88. 88.
    von Uexküll, J.: Theoretical Biology. Harcourt, Brace, New York (1926)Google Scholar
  89. 89.
    Putnam, H.: Representation and Reality. MIT press (1988)Google Scholar
  90. 90.
    Maturana, H.: Biology of Cognition. Research Report BCL 9. 1970, Biological Computer Laboratory: Urbana, IL. Defense Technical Information Center, Illinois (1970)Google Scholar
  91. 91.
    van Dijk, J., Kerkhofs, R., Van Rooij, I., Haselager, P.: Special section: can there be such a thing as embodied embedded cognitive neuroscience? Theory Psychol. 18, 297–316 (2008)CrossRefGoogle Scholar
  92. 92.
    Dodig-Crnkovic, G.: Modeling life as cognitive info-computation. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) Computability in Europe 2014. LNCS, pp. 153–162. Springer, Berlin, Heidelberg (2014)zbMATHGoogle Scholar
  93. 93.
    Ehresmann, A.C.: MENS, an info-computational model for (neuro-)cognitive systems capable of creativity. Entropy 14, 1703–1716 (2012)CrossRefGoogle Scholar
  94. 94.
    Ghosh, S., Aswani, K., Singh, S., Sahu, S., Fujita, D., Bandyopadhyay, A.: Design and construction of a brain-like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic system. Information 5(1), 28–100 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chalmers University of Technology and University of GothenburgGothenburgSweden

Personalised recommendations