Skip to main content

Patient-Specific 3D Reconstruction of a Complete Lower Extremity from 2D X-rays

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9805))

Abstract

This paper introduces a solution that can robustly derive 3D models of musculoskeletal structures from 2D X-ray Images. The present method, as an integrated solution, consists of three components: (1) a musculoskeletal structure immobilization apparatus; (2) an X-ray image calibration phantom; and (3) a statistical shape model-based 2D-3D reconstruction algorithm. These three components are integrated in a systematic way in the present method to derive 3D models of any musculoskeletal structure from 2D X-ray Images in a functional position (e.g., weight-bearing position for lower limb). More specifically, the musculoskeletal structure immobilization apparatus will be used to rigidly fix the X-ray calibration phantom with respect to the underlying anatomy during the image acquisition. The calibration phantom then serves two purposes. For one side, the phantom will allow one to calibrate the projection parameters of any acquired X-ray image. For the other side, the phantom also allows one to track positions of multiple X-ray images of the underlying anatomy without using any additional positional tracker, which is a prerequisite condition for the third component to compute patient-specific 3D models from 2D X-ray images and the associated statistical shape models. Validation studies conducted on both simulated X-ray images and on patients’ X-ray data demonstrate the efficacy of the present solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novosad, J., et al.: Three-dimensional 3-D reconstruction of the spine from a single X-ray image and prior vertebra models. IEEE Trans. Biomed. Eng. 51(9), 1628–1639 (2004)

    Article  Google Scholar 

  2. Zheng, G.: Statistically deformable 2D/3D registration for estimating post-operative cup orientation from a single standard AP X-ray radiograph. Ann. Biomed. Eng. 38(9), 2910–2927 (2000)

    Article  Google Scholar 

  3. Yaniv, Z., Joskowicz, L., Simkin, A., Garza-Jinich, M., Milgrom, C.: Fluoroscopic image processing for computer-aided orthopaedic surgery. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 325–334. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Hofstetter, R., et al.: Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput. Aided Surg. 4(2), 65–76 (1999)

    Article  Google Scholar 

  5. Livyatan, H., Yaniv, Z., Joskowicz, L.: Robust automatic C-arm calibration for fluoroscopy-based navigation: a practical approach. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part II. LNCS, vol. 2489, pp. 60–68. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Jain, A., Fichtinger, G.: C-arm tracking and reconstruction without an external tracker. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 494–502. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cheriet, F., et al.: A novel system for the 3-D reconstruction of the human spine and rib cage from biplanar X-ray images. IEEE Trans. Biomed. Eng. 54(7), 1356–1358 (2007)

    Article  Google Scholar 

  8. Schumann, S., et al.: Calibration of C-arm for orthopedic interventions via statistical model-based distortion correction and robust phantom detection. In: Proceedings of the ISBI 2012, pp. 1204–1207 (2012)

    Google Scholar 

  9. Carter, C.R., Hicken, G.J.: Device for immobilizing a patient and compressing a patient’s skeleton, joints and spine during diagnostic procedures using an MRI unit, CT scan unit or X-ray unit. US Patent 6,860,272 (2005)

    Google Scholar 

  10. Schmit, B.P., Keeton, M., Babusis, B.: Restraining apparatus and method for use in imaging procedures. US Patent 6,882,878 (2005)

    Google Scholar 

  11. Mitton, D., et al.: 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med. Biolo. Eng. Comput. 38(2), 133–139 (2000)

    Article  Google Scholar 

  12. Yu, W., Zheng, G.: Personalized X-ray reconstruction of the proximal femur via a new control point-based 2D–3D registration and residual complexity minimization. VCBM 2014, 155–162 (2014)

    Google Scholar 

  13. Sadowsky, O., Chintalapani, G., Taylor, R.H.: Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 519–526. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Ahmad, O., et al.: Volumetric DXA (VXA) - a new method to extract 3D information from multiple in vivo DXA images. J. Bone Miner. Res. 25, 2468–2475 (2010)

    Article  Google Scholar 

  15. Baka, N., Kaptein, B.L., de Bruijne, M., et al.: 2D–3D reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Med. Image Anal. 15, 840–850 (2011)

    Article  Google Scholar 

  16. Zheng, G.: Personalized X-ray reconstruction of the proximal femur via intensity-based non-rigid 2D-3D registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 598–606. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Zheng, G., et al.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Med. Image Anal. 13, 883–899 (2009)

    Article  Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge Univeristy Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Wybier, M., Bossard, P.: Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine. 80(3), 238–243 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, G., Schumann, S., Alcoltekin, A., Jaramaz, B., Nolte, LP. (2016). Patient-Specific 3D Reconstruction of a Complete Lower Extremity from 2D X-rays. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds) Medical Imaging and Augmented Reality. MIAR 2016. Lecture Notes in Computer Science(), vol 9805. Springer, Cham. https://doi.org/10.1007/978-3-319-43775-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43775-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43774-3

  • Online ISBN: 978-3-319-43775-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics