Boundaries of Scientific Thought

  • Ian T. Durham
Part of the The Frontiers Collection book series (FRONTCOLL)


The scientific revolution, as understood to be the rise of modern science, began in the late Renaissance and took firm hold during the Enlightenment.


Dark Energy Objective Reality Newtonian Mechanic Operational Element Physical Universe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I wish to thank Kevin Staley, Joe Troisi, David Banach, and Tom Moore for fruitful discussions about many of the points addressed in this essay. I also wish to acknowledge the Saint Anselm College Philosophy Club for inspiration, commentary, and good food.


  1. 1.
    Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 6 (2016)Google Scholar
  2. 2.
    Agnes, M.E. (ed.): Webster’s New World College Dictionary. Wiley, Hoboken, NJ (2003)Google Scholar
  3. 3.
    Albert, D.Z., Barrett, J.A.: On what it takes to be a world. Topoi 14, 35–37 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bergmann, P.: The Riddle of Gravitation. Dover Publications, Inc., 1st reprint of 1968 edition (1992)Google Scholar
  5. 5.
    Boixo, S., Flammia, S.T., Caves, C.M., Geremia, J.M.: Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98 (2007)Google Scholar
  6. 6.
    Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)Google Scholar
  7. 7.
    de Bruijn, N.G.: The mathematical vernacular, a language for mathematics with typed sets. Stud. Logic Found. Math. 133, 865–935 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brukner, C., Zeilinger, A.: Quantum physics as a science of information. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics?, pp. 47–61. Springer (2005)Google Scholar
  9. 9.
    Byrne, P.: Personal Communication (2016)Google Scholar
  10. 10.
    Cantlon, J.F.: Math, monkeys, and the developing brain. Proc. Nat. Acad. Sci. 109, 10725–10732 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Clauser, J.F., Shimony, A.: Bell’s Theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    D’Ariano, M.G., Manessi, F., Perinotti, P.: Determinism without causality. Physica Scripta 2014, T163 (2014)Google Scholar
  13. 13.
    Dai, N.: Lecture 1: the history of mechanics. In: Lu, Y. (ed.) A History of Chinese Science and Technology, pp. 294–295. Springer/Shanghai Jiao Tong University Press, Heidelberg/Shanghai (2015)Google Scholar
  14. 14.
    Davies, P.C.W.: Why is the physical world so comprehensible? In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information, pp. 61–70. Addison Wesley, Redwood City (1990)Google Scholar
  15. 15.
    Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proc. R. Soc. London A 400 (1985)Google Scholar
  16. 16.
    Durham, I.T.: Unification and Emergence in Physics: the Problem of Articulation. (2009)
  17. 17.
    Durham, I.T.: In Search of Continuity: Thoughts of an Epistemic Empiricist. (2011)
  18. 18.
    Durham, I.T.: An order-theoretic quantification of contextuality. Information 5, 508–525 (2014)CrossRefGoogle Scholar
  19. 19.
    Eddington, A.S.: Relativity Theory of Protons and Electrons. Cambridge University Press, Cambridge (1936)zbMATHGoogle Scholar
  20. 20.
    Eddington, A.S.: The Philosophy of Physical Science. Cambridge University Press, Cambridge (1939)zbMATHGoogle Scholar
  21. 21.
    Eddington, A.S.: Fundamental Theory. Cambridge University Press, Cambridge (1946)zbMATHGoogle Scholar
  22. 22.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23(7), 987–997 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen [On the relativity principle and the conclusions drawn from it]. Jahrbuch für Radioaktivität und Electronik 4, 411–462 (1907)ADSGoogle Scholar
  24. 24.
    Einstein, A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik 35, 898–906 (1911)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Einstein, A.: Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Annalen der Physik 38, 355–369 (1912)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Feynman, R.: The Character of Physical Law. British Broadcasting Corporation (1965)Google Scholar
  27. 27.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Verlag von Louis Nebert, Halle (1879)Google Scholar
  28. 28.
    Ganesalingam, M.: The Language of Mathematics: A Linguistic and Philosophical Investigation. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550 (1986)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5 (2011)Google Scholar
  31. 31.
    Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere al Nuovo Cimento 27, 293–298 (1980)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hall, M.J.W., Deckert, D.A., Wiseman, H.: Quantum phenomena modelled by interactions between many classical worlds. Phys. Rev. X 4 (2014)Google Scholar
  33. 33.
    Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. Markstrom, K.: Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime. Phys. Rev. D 81 (2010)Google Scholar
  34. 34.
    Jaffe, R.L., Jenkins, A., Kimchi, I.: Quark masses: an environmental impact statement. Phys. Rev. D 79 (2009)Google Scholar
  35. 35.
    Kuhn, T.S.: Objectivity, value judgment, and theory choice. In: The Essential Tension: Selected Studies in the Scientific Tradition and Change. University of Chicago Press (1977)Google Scholar
  36. 36.
    Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press (1996)Google Scholar
  37. 37.
    Lewis, P.G., Jennings, D., Barrett, J., Rudolph, T.: The Quantum State Can be Interpreted Statistically. arXiv:1201.6554v1 (2012)
  38. 38.
    Magueijo, J.: New varying speed of light theories. Rep. Prog. Phys. 66 (2003)Google Scholar
  39. 39.
    Mann, C.R., Twiss, G.R.: Physics. Foresman and Co., Chicago (1910)Google Scholar
  40. 40.
    Mersini-Houghton, L.: Wavefunction of the universe on the landscape. 86, 973–980 (2006)Google Scholar
  41. 41.
    Moore, T.A.: Six Ideas That Shaped Physics, Unit Q: Particles Behave Like Waves. McGraw-Hill, New York (2003)Google Scholar
  42. 42.
    Napolitano, M., Koschorreck, M., Dubost, B., Behbood, N., Sewell, R.J., Mitchell, M.W.: Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Novaes, C.D.: Formal Languages in Logic: A Philosophical and Cognitive Analysis. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  44. 44.
    Pavlov, I.P.: Conditioned Reflexes. Dover Publications Inc, Mineola (2003)Google Scholar
  45. 45.
    Popescu, S., Rohrlich, D.: Causality and nonlocality as axioms for quantum mechanics. In: Hunter, G., Jeffers, S., Vigier, J.P. (eds.) Causality and Nonlocality as Axioms for Quantum Mechanics, pp. 383–389. Springer, Netherlands (1998)Google Scholar
  46. 46.
    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. advance online publication, (2012)
  47. 47.
    Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100 (2008)Google Scholar
  48. 48.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley Longman, Reading, Massachusetts (1994)Google Scholar
  49. 49.
    Scarf, D., Hayne, H., Colombo, M.: Pigeons on par with primates in numerical competence. Science 334, 6063 (2011)CrossRefGoogle Scholar
  50. 50.
    Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1990)Google Scholar
  51. 51.
    Seiberg, N.: Emergent spacetime. In: 23rd Solvay Conference in Physics (2005)Google Scholar
  52. 52.
    Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Oxford University Press, Oxford (1986)Google Scholar
  53. 53.
    Tegmark, M.: The mathematical universe. Found. Phys. 38(2), 101–150 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. 1(230–265), s2–42 (1937)zbMATHGoogle Scholar
  55. 55.
    Wallace, D.: Worlds in the Everett Interpretation. Stud. Hist. Philos. Mod. Phys. 33, 637–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Weinberg, S.: Gravitation and Cosmology. Wiley (1972)Google Scholar
  57. 57.
    Weinberg, S.: To Explain the World: The Discovery of Modern Science. HarperCollins Publishers, New York (2015)zbMATHGoogle Scholar
  58. 58.
    Weinberg, S.: Reflections of a whig physicist. American Physical Society March Meeting (2016)Google Scholar
  59. 59.
    Weinfurtner, S.: Emergent spacetimes. Ph.D. Thesis, Victoria University, Wellington, New Zealand (2007)Google Scholar
  60. 60.
    Wheeler, J.A.: World as System Self-Synthesized by Quantum NetworkingGoogle Scholar
  61. 61.
    Wheeler, J.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information, pp. 3–28. Addison Wesley, Redwood City (1990)Google Scholar
  62. 62.
    Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1995)Google Scholar
  63. 63.
    Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  64. 64.
    Zwierz, M., Pérez-Delgado, C.A., Kok, P.: General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105 (2010)Google Scholar
  65. 65.
    Zwierz, M., Pérez-Delgado, C.A., Kok, P.: Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 85 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Saint Anselm CollegeManchesterUSA

Personalised recommendations