Skip to main content

A Framework for Assessing Soil Moisture Deficit and Crop Water Stress at Multiple Space and Time Scales Under Climate Change Scenarios Using Model Platform, Satellite Remote Sensing, and Decision Support System

  • Chapter
  • First Online:
Remote Sensing of Hydrological Extremes

Abstract

Better understanding of water cycle at different space–time scales would be a key for sustainable water resources, agricultural production, and ecosystems health in the twenty-first century. Efficient agricultural water management is necessary for sustainability of the growing global population. This warrants better predictive tools for aridity (based on precipitation, temperature, land use, and land cover), root zone (~top 1 m) soil moisture deficit, and crop water stress at farm, county, state, region, and national level, where decisions are made to allocate and manage the water resources. It will provide useful strategies for not only efficient water use but also for reducing potential risk of crop failure due to agricultural drought. Leveraging heavily on ongoing multiscale hydrologic modeling, data assimilation, soil moisture dynamics, and inverse model development research activities, and ongoing Land Data Assimilation (LDAS) and National Climate Assessment (NCA) indexing efforts we are developing a drought assessment framework. The drought assessment platform includes: (1) developing disaggregation methods for extracting various field-scale (1-km or less) climate indicators from the (SMOS, VIIRS, SMAP, AMSR-2) satellite / LDAS-based soil moisture in conjunction with a multimodel simulation–optimization approach using ensemble of Soil Vegetation Atmosphere Transfer, SVAT (Noah, CLM, VIC, Mosaic in LIS) models; (2) predicting farm/field-scale long-term root zone soil moisture status under various land management and climate scenarios for the past decades in hindcast mode and for the next decades in forecast mode across the USA using effective land surface parameters and meteorological input from Global Circulation Model (GCM) outputs; (3) assessing the potential risk of agricultural drought at different space–time scales across the USA based on predicted root zone soil moisture; and (4) evaluating various water management and cropping practices (e.g., crop rotation, soil modification, irrigation scheduling, better irrigation method/efficiency, water allocation, etc.) for risk reduction at field, county, state, region, and national scale using a web-based Decision Support System. This ongoing research provides a unifying global platform for forecasting several lagging indices for root zone soil moisture status as aridity index (AI), soil moisture deficit index (SMDI), and crop water stress index (CWSI) at the field, county, state, and regional scale on weekly, biweekly, monthly, and seasonal time scales by using various satellite and LDAS simulated data. Using available historical data, our approach is tested in various hydroclimatic regions (Great Plains, Midwest, West, Northeast, Southeast, and Southwest) across the USA. These indices form the basis for developing efficient management Decision Support Systems (DSS) for agricultural drought risk reduction and mitigation/adaption under the evolving climatic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(W01403):1–19

    Google Scholar 

  • Arsenault KR, Houser PR, De Lannoy GJM (2014) Evaluation of the MODIS snow cover fraction product. Hydrol Process 28(3):980–998. doi:10.1002/hyp.9636

    Article  Google Scholar 

  • Bindlish R, Barros AP (2002) Subpixel variability of remotely sensed soil moisture: an inter-comparison study of SAR and ESTAR. IEEE Trans Geosci Remote Sens 40:326–337

    Article  Google Scholar 

  • Chervin RM (1981) On the comparison of observed GCM simulated climate ensembles. J Atmos Sci 38:885–901

    Article  Google Scholar 

  • Cosh MH, Jackson TJ, Bindlish R, Prueger JH (2004) Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sens Environ 92:427–435

    Article  Google Scholar 

  • Crow WT, Berg A, Cosh MH, Loew A, Mohanty BP, Panciera R, De Rosnay P, Ryu D, Walker J (2012) Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products. Rev Geophys 50:RG2002. doi:10.1029/2011RG000372

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson R, Baker I, Bonan G, Bosilovich M, Denning S, Dirmeyer P, Houser P, Niu G, Oleson K, Schlosser A, Yang Z-L (2003) The common land model (CLM). Bull Am Meteorol Soc 84(4):1013e1023. doi:10.1175/BAMS-84-8-1013

    Google Scholar 

  • Das NN, Mohanty BP (2006) Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone J 5:296–307

    Article  Google Scholar 

  • Das NN, Mohanty BP (2008) Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape during SMEX02: a wavelet approach. Remote Sens Environ 112(2):522–534

    Article  Google Scholar 

  • Das NN, Mohanty BP, Cosh MH, Jackson TJ (2008a) Modeling and assimilation of root zone soil moisture using remote sensing observations in walnut gulch watershed during SMEX04. Remote Sens Environ 112(2):415–429

    Article  Google Scholar 

  • Das NN, Mohanty BP, Njoku EG (2008b) A Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements. Water Resour Res 44. doi:10.1029/2008WR006472

  • Das NN, Mohanty BP, Njoku EG (2010a) Profile soil moisture across spatial scales under different hydroclimatic conditions. Soil Sci 175(7):315–319

    Article  Google Scholar 

  • Das NN, Mohanty BP, Efendiev Y (2010a) Characterization of saturated hydraulic conductivity in agricultural field using Karhunen-Loève expansion with the Markov chain Monte Carlo technique. Water Resour Res 46. doi:10.1029/2007WR007100

  • Das NN, Mohanty BP, Seo D, Efendiev Y (2016) Data-driven downscaling of satellite-based surface soil moisture using high resolution physical controls information. Remote Sensing of Environment, in Review.

    Google Scholar 

  • Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30:1371–1386

    Article  Google Scholar 

  • Ek M, Mitchell K, Yin L, Rogers P, Grunmann P, Koren V, Gayno G, Tarpley J (2003) Implementation of Noah land surface model advances in the NCEP operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Engman T (1991) Application of remote sensing of soil moisture for water resources and agriculture. Remote Sens Environ 35:213–226

    Article  Google Scholar 

  • Entekhabi D, Asrar GR, Betts AK, Beven KJ, Bras RL, Duffy CJ (1999) An agenda for land surface hydrology research and a call for the second international hydrological decade. Bull Am Meteorol Soc 80(10):2043–2058

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, Kimball J, Piepmeier JR, Koster RD, Martin N, McDonald KC, Moghaddam M, Moran S, Reichle R, Shi JC, Spencer MW, Thurman SW, Tsang L, Zyl JV (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Entekhabi et al. 2014, SMAP Handbook, Jet Propulsion Lab, NASA, p. 180

    Google Scholar 

  • Famiglietti JS, Devereaux JA, Laymon CA, Tsegaye T, Houser PR, Jackson TJ, Graham ST, Rodell M, van Oevelen P (1999) Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains (1997) hydrology experiment. Water Resour Res 35:1839–1851

    Article  Google Scholar 

  • Gaur N, Mohanty BP (2013) Evolution of physical controls for soil moisture in humid and sub-humid watersheds. Water Resour Res 49:1–15. doi:10.1002/wrcr.20069

    Article  Google Scholar 

  • Gaur N, Mohanty BP (2015) Land-surface controls on near-surface soil moisture dynamics: 1 traversing remote sensing footprints. Water Resour Res. Revised

    Google Scholar 

  • Gaur N, Mohanty BP (2016) Land-surface controls on near-surface soil moisture dynamics: Traversing remote sensing footprints. Water Resour Res, 52, doi: 10.1002/2015WR018085

  • Gong X, Barnston AG, Ward MN (2003) The effect of spatial aggregation on the skill of seasonal rainfall forecasts. J Clim 16:3059–3071

    Article  Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95

    Article  Google Scholar 

  • Hughes JP, Guttorp P (1994) A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour Res 30:1535–1546

    Article  Google Scholar 

  • Hughes JP, Guttorp P, Charles SP (1999) A non-homogenous hidden Markov model for precipitation occurrence. Appl Stat 48:15–30

    Google Scholar 

  • Ines AVM (2004) GCM bias correction tool. Version 0.3a. IRI-Columbia University, New York

    Google Scholar 

  • Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agric For Meteorol 138:44–53

    Article  Google Scholar 

  • Ines AVM, Honda K (2005) On quantifying agricultural and water management practices from Low spatial resolution RS data using genetic algorithms: a numerical study for mixed pixel environment. Adv Water Resour 28:856–870

    Article  Google Scholar 

  • Ines AVM, Mohanty BP (2008a) Near-surface soil moisture assimilation to quantify effective soil hydraulic properties using genetic algorithm. I. Conceptual modeling. Water Resour Res 44. doi10.1029/2007WR005990

  • Ines AVM, Mohanty BP (2008b) Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: II. Using airborne remote sensing drying SGP97 and SMEX02. Water Resour Res 45. doi10.1029/2008WR007022

  • Ines AVM, Mohanty BP (2009) Parameter conditioning with a noisy Monte Carlo genetic algorithm for estimating effective soil hydraulic properties from space. Water Resour Res 44:W08441. doi:10.1029/2007WR006125

    Google Scholar 

  • Ines AVM, Mohanty BP, Shin Y (2013) An unmixing algorithm for remotely sensed soil moisture. Water Resour Res 49:408–425. doi:10.1029/2012WR012379

    Article  Google Scholar 

  • Jackson TJ, Le Vine DM, Hsu AY, Oldak A, Starks PJ (1999) Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains hydrology experiment. IEEE Trans Geosci Remote Sens 37:2136–2151

    Article  Google Scholar 

  • Jackson TJ, Bindlish R, Gasiewski AJ, Stankov B, Klein M, Njoku EG, Bosch D, Coleman TL, Laymon C, Starks PJ (2005) Polarimetric scanning radiometer C and X band microwave observations during SMEX03. IEEE Trans Geosci Remote Sens 43(11):2418–2429

    Article  Google Scholar 

  • Jacobs J, Mohanty BP, Hsu E-C, Miller D (2004) Field scale variability and similarity of soil moisture during SMEX02. Remote Sens Environ 92:436–446

    Article  Google Scholar 

  • Jana R (2010) Scaling characteristics of soil hydraulic parameters at varying spatial resolutions. Ph.D. Dissertation, Texas A&M University, p 264

    Google Scholar 

  • Jana R, Mohanty BP (2012a) On topographic controls of soil hydraulic parameter scaling at hillslope scales. Water Resour Res 48:W02518. doi:10.1029/2011WR011204

    Google Scholar 

  • Jana R, Mohanty BP (2012b) A topography-based scaling algorithm for soil hydraulic parameters at hillslope scales: field testing. Water Resour Res 48:W02519. doi:10.1029/2011WR011205

    Google Scholar 

  • Jana R, Mohanty BP (2012c) A comparative study of multiple approaches to soil hydraulic parameter scaling applied at the hillslope scale. Water Resour Res 48:W02520. doi:10.1029/2010WR010185

    Google Scholar 

  • Jana R, Mohanty BP, Springer EP (2007) Multi-scale pedo-transfer functions for soil water retention. Vadose Zone J 6(4):868–878

    Article  Google Scholar 

  • Jana R, Mohanty BP, Springer E (2008) Bayesian implementation of multi-scale pedo-transfer functions with Non-linear bias corrections. Water Resour Res 44:W08408. doi:10.1029/2008WR006879

    Article  Google Scholar 

  • Jasinski M, Arsenault K, Beaudoing H, Bolten J, Borak J, Kempler S, Kumar S, Peters-Lidard C, Li B, Liu Y, Mocko D, Rodell M, Vollmer B (2014) NCA-LDAS: an integrated terrestrial water analysis system for development, evaluation, and dissemination of climate indicators. In: American geophysical union fall meeting, San Francisco, p GC51B–0405

    Google Scholar 

  • Joshi C, Mohanty BP (2010) Physical controls of near‐surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour Res 46:12503. doi:10.1029/2010WR009152

    Article  Google Scholar 

  • Joshi C, Mohanty BP, Jacobs J, Ines AVM (2011) Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions. Water Resour Res 47. doi:10.1029/2009WR009002

  • Kim G, Barros AP (2002) Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens Environ 83:400–413

    Article  Google Scholar 

  • Kim J, Mohanty BP, Shin Y (2015) Effective soil moisture estimates and its uncertainty using multi-model simulation based on Bayesian model averaging. J Geophys Res Atmos 120:8023–8042. doi:10.1002/2014JD022905

    Article  Google Scholar 

  • Kirshner S, Smyth P, Robertson AW (2004) Conditional Chow-Liu tree structures for modeling discrete-valued vector time series. Technical Report UCI-ICS 04-04. Information and Computer Science. University of California, Irvine

    Google Scholar 

  • Koster R, Suarez M (1996) Energy and water balance calculations in the Mosaic LSM. Technical memorandum 104606, NASA Goddard Space Flight Center

    Google Scholar 

  • Kumar SV, Peters-Lidard CD, Tian Y, Houser PR, Geiger J, Olden S, Lighty L, Eastman JL, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2006) Land information system: an interoperable framework for high resolution land surface modeling. Environmental Modeling & Software 21:1402–1415

    Article  Google Scholar 

  • Kumar SV, Peters-Lidard CD, Mocko D, Tian Y (2013) Multiscale evaluation of the improvements in surface snow simulation through terrain adjustments to radiation. J Hydrometeorol 14:220–232. http://dx.doi.org/10.1175/JHM-D-12-046.1

  • Kumar SV, Peters-Lidard CD, Mocko D, Reichle R, Liu Y, Arsenault K, Xia Y, Ek M, Riggs G, Livneh B, Cosh M (2014) Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J Hydrometeorol 15(6):2446–2469. doi:10.1175/JHM-D-13-0132.1

    Article  Google Scholar 

  • Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO (2004) Mid-century ensemble regional climate change scenarios for the Western United States. Climate Change 62:75–113

    Article  Google Scholar 

  • Liang X, Lettenmaier D, Wood E (1996) One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J Geophys Res 101(D16):21403e21422

    Article  Google Scholar 

  • Liu Y, Peters-Lidard CD, Kumar SV, Foster JL, Shaw M, Tian Y, Fall GM (2013) Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv Water Resour 54:208–227. http://dx.doi.org/10.1016/j.advwatres.2013.02.005

  • Madigan D, Raftery AE, Volinsky C, Hoeting J (1996) Bayesian model averaging. In: Proceedings of the AAAI workshop on integrating multiple learned models, AAAI Press, Portland, p 77–83

    Google Scholar 

  • Mohanty BP, Skaggs TH (2001) Spatio-temporal evolution and time stable characteristics of soil moisture within remote sensing footprints with varying soils, slopes, and vegetation. Adv Water Resour 24:1051–1067

    Article  Google Scholar 

  • Mohanty BP, Zhu J (2007) Effective hydraulic parameters in horizontally and vertically heterogeneous soils for steady-state land–atmosphere interaction. J Hydrometeorol 8(4):715–729

    Article  Google Scholar 

  • Mohanty BP, Skaggs TH, Famiglietti JS (2000a) Analysis and mapping of field-scale soil moisture variability using high-resolution ground based data during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour Res 36:1023–1032

    Article  Google Scholar 

  • Mohanty BP, Famiglietti JS, Skaggs TH (2000b) Evolution of soil moisture spatial structure in a mixed-vegetation pixel during the SGP97 hydrology experiment. Water Resour Res 36(12):3675–3686

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Narasimhan B, Srinivasan R (2005) Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric For Meteorol 133:69–88

    Article  Google Scholar 

  • Peters-Lidard CD, Houser PR, Tian Y, Kumar SV, Geiger J, Olden S, Lighty L, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2007) High-performance earth system modeling with NASA/GSFC’s land information system. Innov Syst Softw Eng 3(3):157–165

    Article  Google Scholar 

  • Robertson AW, Kirshner S, Smyth P (2004) Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model. J Clim 17:4407–4424

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Claussen CM, Dümenil L, Esch M, Giorgetta M, Schiese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institute for Meteorology. Report No. 218, Hamburg

    Google Scholar 

  • Rui H, Teng W, Vollmer B, Jasinski M, Mocko D, Kempler S (2014) National Climate Assessment-Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC. In: American geophysical union fall meeting, San Francisco, p GC51B–0405

    Google Scholar 

  • Santanello JA, Kumar SV, Peters-Lidard CD, Harrison KW, Zhou S (2013) Impact of land model calibration on coupled land-atmosphere prediction. J Hydrometeorol 14:1373–1400. http://dx.doi.org/10.1175/JHM-D-12-0127.1

  • Shin Y, Mohanty BP (2013) Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resour Res 49:10. doi:10.1002/wrcr.20495

    Article  Google Scholar 

  • Shin Y, Mohanty BP, Ines AVM (2012) Soil hydraulic properties in one-dimensional layered soil profile using layer-specific soil moisture assimilation scheme. Water Resour Res 48:W06529. doi:10.1029/2010WR009581

    Article  Google Scholar 

  • Sivapalan M, Beven K, Wood EF (1987) On hydrologic similarity 2. A scaled model of storm runoff production. Water Resour Res 23:2266–2278

    Article  Google Scholar 

  • Sud Y, Mocko D (1999) New snow-physics to complement Ssib Part I: design and evaluation with ISLSCP initiative I datasets. J Meteorol Soc Jpn 77(1B):335–348

    Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21:530–548

    Article  Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewistson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008

    Article  Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the Eastern United States. J Geophys Res 107(D20):4429. doi:10.1029/2001JD000659

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Chang 62:189–216

    Article  Google Scholar 

  • Zaitchik BF, Santanello JA, Kumar SV, Peters-Lidard CD (2013) Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J Hydrometeorol 14:360–367. http://dx.doi.org/10.1175/JHM-D-12-069.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binayak P. Mohanty Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohanty, B.P., Ines, A.V.M., Shin, Y., Gaur, N., Das, N., Jana, R. (2017). A Framework for Assessing Soil Moisture Deficit and Crop Water Stress at Multiple Space and Time Scales Under Climate Change Scenarios Using Model Platform, Satellite Remote Sensing, and Decision Support System. In: Lakshmi, V. (eds) Remote Sensing of Hydrological Extremes. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-43744-6_9

Download citation

Publish with us

Policies and ethics