Advertisement

Common Methods and Processes

  • A. Terry Bahill
  • Azad M. Madni
Chapter

Abstract

The methods and processes presented in this chapter are those that are commonly used in requirements discovery, trade-off studies, and risk analyses. We replaced synonyms and then found that these seemingly disparate processes turned out to be the same.

Keywords

Concept exploration Evaluation criteria Weight of importance Scoring functions Normalization Combining functions Technical performance measures Prioritization Frequency versus probability Sensitivity analysis 

References

  1. 1.
    Bahill AT, Dean F (2009) Discovering system requirement. In: Sage AP, Rouse WB (eds) Handbook of systems engineering and management. Wiley, Hoboken, pp 205–266Google Scholar
  2. 2.
    Madni AM (2013) Generating novel options during systems architecting: psychological principles, systems thinking, and computer-based aiding. Syst Eng 17(1):1–9CrossRefGoogle Scholar
  3. 3.
    Madni AM (2014) Expanding stakeholder participation in upfront system engineering through storytelling in virtual worlds. Syst Eng 18(1):16–27CrossRefGoogle Scholar
  4. 4.
    Kirkwood C (1998) Strategic decision making multiobjective decision analysis with spreadsheets. J Oper Res Soc 49(1):93–98CrossRefGoogle Scholar
  5. 5.
    Madni AM, Nance M, Richey M, Hubbard W, Hanneman L (2014) Toward an experiential design language: augmenting model-based systems engineering with technical storytelling in virtual worlds. Procedia Comput Sci 28:848–856CrossRefGoogle Scholar
  6. 6.
    Madni AM, Samet MG, Freedy A (1982) A trainable on-line model of the human operator in information acquisition tasks. IEEE Trans Syst Man Cybern 12(4):504–511CrossRefGoogle Scholar
  7. 7.
    Buede DM (2009) The engineering design of systems: models and methods, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  8. 8.
    Madni AM, Madni CC, Salasin J (2002) 5.4.1 ProACT™: process-aware zero latency system for distributed, collaborative enterprises. In: INCOSE international symposium, vol 12, no 1, pp 783–790Google Scholar
  9. 9.
    Bahill AT, Karnavas WJ (2000) Risk analysis of a pinewood derby: a case study. Syst Eng 3(3):143–155CrossRefGoogle Scholar
  10. 10.
    Madni A, Freedy A, Estrin G, Melkanoff M (eds) (1991) Concurrent engineering workstation for multi-chip module product development process. Invited paper presented at QALS Q QE Washington’91 conference and exposition, Washington, DCGoogle Scholar
  11. 11.
    Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    Von Neumann J, Morgenstern O (1953) Theory of games and economic behavior, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Botta R, Bahill AT (2007) A prioritization process. Eng Manag J 19(4):20–27CrossRefGoogle Scholar
  14. 14.
    Edwards W (1977) How to use multiattribute utility measurement for social decisionmaking. IEEE Trans Syst Man Cybern 7(5):326–340CrossRefGoogle Scholar
  15. 15.
    Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. Wiley, New YorkGoogle Scholar
  16. 16.
    Watson SR, Buede DM (1987) Decision synthesis: the principles and practice of decision analysis. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Wymore AW (1993) Model-based systems engineering. CRC, Boca RatonGoogle Scholar
  18. 18.
    Wayne LW (1994) Operations research: applications and algorithms. Duxbury Press, BostonGoogle Scholar
  19. 19.
    Keeney RL (1992) Value-focused thinking: a path to creative decisionmaking. Harvard University Press, CambridgeGoogle Scholar
  20. 20.
    Chapman WL, Bahill AT, Wymore AW (1992) Engineering modeling and design. CRC, Boca Raton, http://sysengr.engr.arizona.edu/pinewood.pdf Google Scholar
  21. 21.
    Buchanan BG, Shortliffe EH (1984) Rule-based expert systems. Addison-Wesley, ReadingGoogle Scholar
  22. 22.
    Steuer RE (1986) Multiple criteria optimization: theory, computation, and applications. Wiley, New YorkGoogle Scholar
  23. 23.
    Smith ED (2006) Tradeoff studies and cognitive biases. University of Arizona, TucsonGoogle Scholar
  24. 24.
    Madni A, Ross AM (2016) Exploring concept tradeoffs. In: Parnell GS (ed) Using tradeoff analyses to identify value and risk. Wiley, New YorkGoogle Scholar
  25. 25.
    Stern C, Sherwoods ER (1966) The origins of genetics: a Mendel source book. Freeman, San FranciscoGoogle Scholar
  26. 26.
    Keefer DL, Pollock SM (1980) Approximations and sensitivity in multiobjective resource allocation. Oper Res 28(1):114–128CrossRefGoogle Scholar
  27. 27.
    Bahill AT, Dahlberg SO, Lowe RA (1998) 1.2.3 Difficulties in using multicriterion decision making techniques for tradeoff studies selecting amongst alternative concepts. In: INCOSE international symposium, vol 8, no 1, pp 192–197Google Scholar
  28. 28.
    Oakes J, Botta R, Bahill AT (2006) 11.1.1 Technical performance measures. In: INCOSE international symposium, vol 16, no 1, pp 1466–1474Google Scholar
  29. 29.
    Gilb T, Maier MW (2005) 11.4.2 Managing priorities: a key to systematic decision-making. In: INCOSE international symposium, vol 15, no 1, pp 1687–1705Google Scholar
  30. 30.
    Jacobson I, Booch G, Rumbaugh J, Rumbaugh J, Booch G (1999) The unified software development process. Addison-Wesley, ReadingGoogle Scholar
  31. 31.
    Daniels J, Werner PW, Bahill AT (2001) Quantitative methods for tradeoff analyses. Syst Eng 4(3):190–212CrossRefGoogle Scholar
  32. 32.
    Bahill AT, Chapman WL (1993) A tutorial on quality function deployment. Eng Manag J 5(3):24–35CrossRefGoogle Scholar
  33. 33.
    Ghiya KK, Bahill AT, Chapman WL (1999) QFD: validating robustness. Qual Eng 11(4):593–611CrossRefGoogle Scholar
  34. 34.
    Bahill AT, Botta R, Daniels J (2006) The Zachman framework populated with baseball models. J Enterp Archit 2(4):50–68Google Scholar
  35. 35.
    Rechtin E, Maier M (1997) The art of systems architecting. CRC, Boca RatonGoogle Scholar
  36. 36.
    Gigerenzer G (2002) Reckoning the risk. Penguin, New YorkGoogle Scholar
  37. 37.
    Clausen D, Frey DD (2005) Improving system reliability by failure-mode avoidance including four concept design strategies. Syst Eng 8(3):245–261CrossRefGoogle Scholar
  38. 38.
    Harris AJ, Corner A, Hahn U (2009) Estimating the probability of negative events. Cognition 110(1):51–64CrossRefGoogle Scholar
  39. 39.
    Gigerenzer G (1991) How to make cognitive illusions disappear: beyond “heuristics and biases”. Eur Rev Soc Psychol 2(1):83–115CrossRefGoogle Scholar
  40. 40.
    Kuhn HW, Tucker AW (eds) (1951) Nonlinear programming. In: Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, CAGoogle Scholar
  41. 41.
    Anscombe FJ (1973) Graphs in statistical analysis. Am Stat 27(1):17–21Google Scholar
  42. 42.
    Wymore AW, Bahill AT (2000) When can we safely reuse systems, upgrade systems, or use COTS components? Syst Eng 3(2):82–95CrossRefGoogle Scholar
  43. 43.
    Lewis M (2003) Moneyball: the art of winning an unfair game. W. W. Norton & Company, New YorkGoogle Scholar
  44. 44.
    Smith ED, Szidarovszky F, Karnavas WJ, Bahill AT (2008) Sensitivity analysis, a powerful system validation technique. Open Cybern Syst J 2:39–56CrossRefGoogle Scholar
  45. 45.
    Karnavas WJ, Sanchez PJ, Bahill AT (1993) Sensitivity analyses of continuous and discrete systems in the time and frequency domains. IEEE Trans Syst Man Cybern 23(2):488–501CrossRefGoogle Scholar
  46. 46.
    Box JF (1981) Gosset, Fisher, and the t distribution. Am Stat 35(2):61–66Google Scholar
  47. 47.
    Pignatiello JJ, Ramberg JS (1985) Off-line quality-control, parameter design, and the Taguchi method-discussion. J Qual Technol 17(4):198–206Google Scholar
  48. 48.
    Bahill AT, Baldwin DG, Ramberg JS (2009) Effects of altitude and atmospheric conditions on the flight of a baseball. Int J Sports Sci Eng 3(2):109–128Google Scholar
  49. 49.
    Shelquist R [cited 2016 February]. https://wahiduddin.net/calc/calc_da_rh.htm
  50. 50.
    Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12):1527–1532CrossRefGoogle Scholar
  51. 51.
    Chambers F, Page B, Zaidins C (2003) Atmosphere, weather, and baseball: how much farther do baseballs really fly at Denver’s Coors Field? Prof Geogr 55(4):491–504CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • A. Terry Bahill
    • 1
  • Azad M. Madni
    • 2
  1. 1.Systems and Industrial EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Astronautical Engineering DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations