Copy-Number Evolution Problems: Complexity and Algorithms

  • Mohammed El-Kebir
  • Benjamin J. Raphael
  • Ron Shamir
  • Roded Sharan
  • Simone Zaccaria
  • Meirav Zehavi
  • Ron Zeira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9838)

Abstract

Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a population of cells that form a tumor. One frequent type of mutations are copy number aberrations, which alter the number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the chromosome’s copy-number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis and prognosis. We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from profile \(\mathbf {a}\) to \(\mathbf {b}\) by the minimum number of events needed to transform \(\mathbf {a}\) into \(\mathbf {b}\). Given two profiles, our first problem aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal vertices are labeled by ancestral profiles such that the sum of edge distances is minimum. For the former problem we give a pseudo-polynomial dynamic programming algorithm that is linear in the profile length, and an integer linear program formulation. For the latter problem we show it is NP-hard and give an integer linear program formulation. We assess the efficiency and quality of our algorithms on simulated instances.

References

  1. 1.
    Chowdhury, S., et al.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput. Biol. 10(7), 1–19 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ciriello, G., et al.: Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013)CrossRefGoogle Scholar
  3. 3.
    El-Kebir, M., et al.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)CrossRefGoogle Scholar
  4. 4.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)Google Scholar
  5. 5.
    Fisher, R., et al.: Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108(3), 479–485 (2013)CrossRefGoogle Scholar
  6. 6.
    Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Adv. Appl. Math. 3, 43–49 (1982)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jiao, W., et al.: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 15(1), 1–16 (2014)CrossRefGoogle Scholar
  8. 8.
    Malikic, S., et al.: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9), 1349–1356 (2015)CrossRefGoogle Scholar
  9. 9.
    Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28 (1976)CrossRefGoogle Scholar
  10. 10.
    Popic, V., et al.: Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16, 91 (2015)CrossRefGoogle Scholar
  11. 11.
    Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schwarz, R., et al.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10(4), 1–11 (2014)CrossRefGoogle Scholar
  13. 13.
    Shamir, R., et al.: A linear-time algorithm for the copy number transformation problem. In: Grossi, R., Lewenstein, M., et al. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), LIPIcs, vol. 54, pp. 16:1–16:13. Dagstuhl, Germany (2016)Google Scholar
  14. 14.
    Sottoriva, A., et al.: A Big Bang model of human colorectal tumor growth. Nat. Genet. 47(3), 209–216 (2015)CrossRefGoogle Scholar
  15. 15.
    Yuan, K., et al.: BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 16(1), 1–16 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, J., Lin, Y., Rajan, V., Hoskins, W., Tang, J.: Maximum parsimony analysis of gene copy number changes. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp. 108–120. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohammed El-Kebir
    • 1
  • Benjamin J. Raphael
    • 1
  • Ron Shamir
    • 2
  • Roded Sharan
    • 2
  • Simone Zaccaria
    • 1
    • 3
  • Meirav Zehavi
    • 2
  • Ron Zeira
    • 2
  1. 1.Department of Computer Science, Center for Computational Molecular BiologyBrown UniversityProvidenceUSA
  2. 2.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Dipartimento di Informatica Sistemistica E Comunicazione (DISCo)Univ. Degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations